Sexual attraction and mating compatibility between Thaumatotibia leucotreta populations and implications for semiochemical dependent technologies
- Authors: Upfold, Jennifer Kate
- Date: 2020
- Subjects: Cryptophlebia leucotreta -- South Africa , Cryptophlebia leucotreta -- Reproduction , Citrus -- Disease and pests -- Control -- South Africa , Insect sterilization -- South Africa , Pheromones , Pheromone traps
- Language: English
- Type: text , Thesis , Masters , MSc
- Identifier: http://hdl.handle.net/10962/148526 , vital:38747
- Description: False codling moth (FCM), Thaumatotibia leucotreta (Meyrick), is the most important pest for the cultivation of citrus in South Africa. False codling moth is indigenous to southern Africa and is a regulated pest of many international markets for phytosanitary concerns. Considerable research efforts have been invested in the past decades to develop semiochemcial technologies, such as monitoring with sex pheromones, attract-and-kill, mating disruption and the sterile insect technique. One of the potential obstacles identified with semiochemical control is the differences in the ratio of the compounds comprising the sex pheromone at different geographical locations, resulting in what is known as regional attraction. This has been identified in FCM populations from three different countries, however, regional attraction within South African FCM populations was unknown. Therefore, the study assessed the genetic integrity of five laboratory-reared FCM populations originating from geographically isolated populations in South Africa using the AFLP technique in order to assess regional attractiveness within the country. The results found isolated populations from Addo, Citrusdal, Marble Hall, Nelspruit and a fifth group found to be closely related to Addo and Citrusdal called the ‘Old’ colony. These five genetically isolated populations as well as a population from Xsit (Pty) Ltd, used for the sterile insect technique (SIT), were used in regional attractiveness trials. Males were significantly (P = <0.05) more attracted to females originating from the same population. No significant attraction could be determined from the sterile males, as the recapture rates in the trap were too low. Furthermore, regional attractiveness was assessed through choice/ no-choice mating compatibility trials. Significant sexual isolation (ISI) occurred between mating combinations Addo × Nelspruit (ISI = 0,13; t2 = 6.23; p = 0.02), Addo × Marble Hall (ISI = 0,11; t2 = 4.72; p = 0.04), Citrusdal × Nelspruit (ISI = 0,11; t2 = 4.95; p = 0.04), and Citrusdal × Marble Hall (ISI = 0,12; t2 = 4.31; p = 0.04). In these combinations, Addo and Citrusdal males were found to have outcompeted Nelspruit and Marble Hall males for more mating events. Significant sexual isolation was also recorded for Sterile × Marble Hall (ISI = 0.12; t2 = 4.98; p =0.01) and Sterile × Citrusdal (ISI = 0.13; t2 = 3.96; p = 0.01) populations. The male relative performance index was significant in both combinations, indicating that non-sterile laboratory males outcompeted the sterile males in these two combinations. When given no choice, evaluated as spermatophore transfer/ female/ 48h, all males (including sterile) were successful in transferring spermatophores to all FCM populations, with no significant differences. These results indicate that there may be incipient pre-isolation mechanisms affected by local natural selection, resulting in localised sexual attraction via differences in the sex pheromone ratios. These findings provide important information for semiochemical technologies and the implication of these results with regard to monitoring with sex pheromones, attract-and-kill, mating disruption and sterile insect technique are discussed.
- Full Text:
- Authors: Upfold, Jennifer Kate
- Date: 2020
- Subjects: Cryptophlebia leucotreta -- South Africa , Cryptophlebia leucotreta -- Reproduction , Citrus -- Disease and pests -- Control -- South Africa , Insect sterilization -- South Africa , Pheromones , Pheromone traps
- Language: English
- Type: text , Thesis , Masters , MSc
- Identifier: http://hdl.handle.net/10962/148526 , vital:38747
- Description: False codling moth (FCM), Thaumatotibia leucotreta (Meyrick), is the most important pest for the cultivation of citrus in South Africa. False codling moth is indigenous to southern Africa and is a regulated pest of many international markets for phytosanitary concerns. Considerable research efforts have been invested in the past decades to develop semiochemcial technologies, such as monitoring with sex pheromones, attract-and-kill, mating disruption and the sterile insect technique. One of the potential obstacles identified with semiochemical control is the differences in the ratio of the compounds comprising the sex pheromone at different geographical locations, resulting in what is known as regional attraction. This has been identified in FCM populations from three different countries, however, regional attraction within South African FCM populations was unknown. Therefore, the study assessed the genetic integrity of five laboratory-reared FCM populations originating from geographically isolated populations in South Africa using the AFLP technique in order to assess regional attractiveness within the country. The results found isolated populations from Addo, Citrusdal, Marble Hall, Nelspruit and a fifth group found to be closely related to Addo and Citrusdal called the ‘Old’ colony. These five genetically isolated populations as well as a population from Xsit (Pty) Ltd, used for the sterile insect technique (SIT), were used in regional attractiveness trials. Males were significantly (P = <0.05) more attracted to females originating from the same population. No significant attraction could be determined from the sterile males, as the recapture rates in the trap were too low. Furthermore, regional attractiveness was assessed through choice/ no-choice mating compatibility trials. Significant sexual isolation (ISI) occurred between mating combinations Addo × Nelspruit (ISI = 0,13; t2 = 6.23; p = 0.02), Addo × Marble Hall (ISI = 0,11; t2 = 4.72; p = 0.04), Citrusdal × Nelspruit (ISI = 0,11; t2 = 4.95; p = 0.04), and Citrusdal × Marble Hall (ISI = 0,12; t2 = 4.31; p = 0.04). In these combinations, Addo and Citrusdal males were found to have outcompeted Nelspruit and Marble Hall males for more mating events. Significant sexual isolation was also recorded for Sterile × Marble Hall (ISI = 0.12; t2 = 4.98; p =0.01) and Sterile × Citrusdal (ISI = 0.13; t2 = 3.96; p = 0.01) populations. The male relative performance index was significant in both combinations, indicating that non-sterile laboratory males outcompeted the sterile males in these two combinations. When given no choice, evaluated as spermatophore transfer/ female/ 48h, all males (including sterile) were successful in transferring spermatophores to all FCM populations, with no significant differences. These results indicate that there may be incipient pre-isolation mechanisms affected by local natural selection, resulting in localised sexual attraction via differences in the sex pheromone ratios. These findings provide important information for semiochemical technologies and the implication of these results with regard to monitoring with sex pheromones, attract-and-kill, mating disruption and sterile insect technique are discussed.
- Full Text:
Thaumatotibia leucotreta (Meyrick) (Lepidoptera: Tortricidae) population ecology in citrus orchards: the influence of orchard age
- Authors: Albertyn, Sonnica
- Date: 2018
- Subjects: Cryptophlebia leucotreta , Population biology , Insect populations , Orchards , Insect nematodes , Entomopathogenic fungi
- Language: English
- Type: text , Thesis , Doctoral , PhD
- Identifier: http://hdl.handle.net/10962/62615 , vital:28213
- Description: Anecdotal reports in the South African citrus industry claim higher populations of false codling moth (FCM), Thaumatotibia (Cryptophlebia) leucotreta (Meyr) (Lepidoptera: Tortricidae), in orchards during the first three to five harvesting years of citrus planted in virgin soil, after which, FCM numbers seem to decrease and remain consistent. Various laboratory studies and field surveys were conducted to determine if, and why juvenile orchards (four to eight years old) experience higher FCM infestation than mature orchards (nine years and older). In laboratory trials, Washington Navel oranges and Nova Mandarins from juvenile trees were shown to be significantly more susceptible to FCM damage and significantly more attractive for oviposition in both choice and no-choice trials, than fruit from mature trees. Although fruit from juvenile Cambria Navel trees were significantly more attractive than mature orchards for oviposition, they were not more susceptible to FCM damage. In contrast, fruit from juvenile and mature Midnight Valencia orchards were equally attractive for oviposition, but fruit from juvenile trees were significantly more susceptible to FCM damage than fruit from mature trees. Artificial diets were augmented with powder from fruit from juvenile or mature Washington Navel orchards at 5%, 10%, 15% or 30%. Higher larval survival of 76%, 63%, 50% and 34%, respectively, was recorded on diets containing fruit powder from the juvenile trees than on diets containing fruit powder from the mature trees, at 69%, 57%, 44% and 27% larval survival, respectively. Bioassays were conducted to determine if differences in plant chemistry between fruit from juvenile and mature trees will have an impact on the susceptibility FCM to entomopathogenic nematodes (EPN), entomopathogenic fungi (EPF) and Cryptophlebia leucotreta granulovirus (CrleGV). No significant differences in the susceptibility of larvae reared on diets containing 15% fruit powder from juvenile and mature trees to EPN and EPF were recorded. Mortality of neonate larvae was significantly lower when placed on diets containing 15% fruit powder from mature trees (45% mortality) than diets containing 15% fruit powder from juvenile trees (61% mortality), after larvae ingested the lowest virus concentration tested, being 2 x104 OBs/ml. Data collected from field surveys showed significantly lower egg parasitism, virus infection of larvae and EPF occurrence in juvenile orchards than mature orchards. Egg parasitism was between 11% and 54% higher in mature orchards than juvenile orchards, with the exception of Mandarins during 2015, where egg parasitism was slightly higher in juvenile orchards, but not significantly so. A significantly higher proportion of larvae retrieved from mature orchards (7% of larvae) were infected with CrleGV than larvae retrieved from juvenile orchards (4% of larvae). A significantly higher occurrence of EPF was recorded in non-bearing and mature orchards, with 40% and 37% occurrence respectively, than in juvenile orchards, with 25% occurrence recorded. EPF occurrence in juvenile orchards increased significantly by 16% to 32% from the first to the third year of sampling. In contrast to results recorded in laboratory trials, similar or higher pest pressure in juvenile orchards than mature orchards did not always result in significantly higher levels of FCM damage under field conditions. FCM damage in juvenile orchards may have been lower than expected, as greater extremes of temperature and lower humidity were recorded in juvenile orchards, which would increase larval mortality. Results of this study showed that juvenile and mature orchards are significantly different and should be managed differently.
- Full Text:
- Authors: Albertyn, Sonnica
- Date: 2018
- Subjects: Cryptophlebia leucotreta , Population biology , Insect populations , Orchards , Insect nematodes , Entomopathogenic fungi
- Language: English
- Type: text , Thesis , Doctoral , PhD
- Identifier: http://hdl.handle.net/10962/62615 , vital:28213
- Description: Anecdotal reports in the South African citrus industry claim higher populations of false codling moth (FCM), Thaumatotibia (Cryptophlebia) leucotreta (Meyr) (Lepidoptera: Tortricidae), in orchards during the first three to five harvesting years of citrus planted in virgin soil, after which, FCM numbers seem to decrease and remain consistent. Various laboratory studies and field surveys were conducted to determine if, and why juvenile orchards (four to eight years old) experience higher FCM infestation than mature orchards (nine years and older). In laboratory trials, Washington Navel oranges and Nova Mandarins from juvenile trees were shown to be significantly more susceptible to FCM damage and significantly more attractive for oviposition in both choice and no-choice trials, than fruit from mature trees. Although fruit from juvenile Cambria Navel trees were significantly more attractive than mature orchards for oviposition, they were not more susceptible to FCM damage. In contrast, fruit from juvenile and mature Midnight Valencia orchards were equally attractive for oviposition, but fruit from juvenile trees were significantly more susceptible to FCM damage than fruit from mature trees. Artificial diets were augmented with powder from fruit from juvenile or mature Washington Navel orchards at 5%, 10%, 15% or 30%. Higher larval survival of 76%, 63%, 50% and 34%, respectively, was recorded on diets containing fruit powder from the juvenile trees than on diets containing fruit powder from the mature trees, at 69%, 57%, 44% and 27% larval survival, respectively. Bioassays were conducted to determine if differences in plant chemistry between fruit from juvenile and mature trees will have an impact on the susceptibility FCM to entomopathogenic nematodes (EPN), entomopathogenic fungi (EPF) and Cryptophlebia leucotreta granulovirus (CrleGV). No significant differences in the susceptibility of larvae reared on diets containing 15% fruit powder from juvenile and mature trees to EPN and EPF were recorded. Mortality of neonate larvae was significantly lower when placed on diets containing 15% fruit powder from mature trees (45% mortality) than diets containing 15% fruit powder from juvenile trees (61% mortality), after larvae ingested the lowest virus concentration tested, being 2 x104 OBs/ml. Data collected from field surveys showed significantly lower egg parasitism, virus infection of larvae and EPF occurrence in juvenile orchards than mature orchards. Egg parasitism was between 11% and 54% higher in mature orchards than juvenile orchards, with the exception of Mandarins during 2015, where egg parasitism was slightly higher in juvenile orchards, but not significantly so. A significantly higher proportion of larvae retrieved from mature orchards (7% of larvae) were infected with CrleGV than larvae retrieved from juvenile orchards (4% of larvae). A significantly higher occurrence of EPF was recorded in non-bearing and mature orchards, with 40% and 37% occurrence respectively, than in juvenile orchards, with 25% occurrence recorded. EPF occurrence in juvenile orchards increased significantly by 16% to 32% from the first to the third year of sampling. In contrast to results recorded in laboratory trials, similar or higher pest pressure in juvenile orchards than mature orchards did not always result in significantly higher levels of FCM damage under field conditions. FCM damage in juvenile orchards may have been lower than expected, as greater extremes of temperature and lower humidity were recorded in juvenile orchards, which would increase larval mortality. Results of this study showed that juvenile and mature orchards are significantly different and should be managed differently.
- Full Text:
- «
- ‹
- 1
- ›
- »