An assessment of the status of psylloid species (Hemiptera: Psylloidea) as potential pests of commercial citrus in southern Africa: implications for pest management
- Authors: Moagi, Raynold
- Date: 2024-10-11
- Subjects: Citrus Diseases and pests South Africa , Candidatus Liberibacter , Psylloidea , Polymerase chain reaction , Insect trapping Equipment and supplies , Pests Control
- Language: English
- Type: Academic theses , Master's theses , text
- Identifier: http://hdl.handle.net/10962/464417 , vital:76509
- Description: Psylloids (Hemiptera: Psylloidea), constitute a group of plant sap-sucking insects, some of which are economically significant pests in different ecosystems due to their potential to transmit Gram-negative bacteria, such as the Candidatus Liberibacter species. The African citrus triozid (ACT), Trioza erytreae (Del Guercio), which transmits African citrus greening and the Asian citrus psyllid (ACP), Diaphorina citri Kuwayama, which transmits Asian citrus greening are significant threats to citrus. Asian citrus psyllid poses a global economic threat due to its ability to vector “Candidatus Liberibacter asiaticus” (CLas), which can rapidly kill citrus trees. However, both ACP and CLas are currently not present in southern Africa but are present in East and West Africa. In the Afrotropical region, 71 triozid species are known to occur and approximately 41 described Diaphorina species in southern Africa. Currently, two indigenous Diaphorina species, Diaphorina punctulata and Diaphorina zebrana have been documented to feed on citrus. There is a significant knowledge gap regarding the ecological roles of other indigenous psylloid species occurring within the citrus environments. Therefore, this study aimed to: (i) determine the diversity and community structure of psylloid species in citrus environments, and (ii) their host ranges through DNA analysis of gut contents to determine if they fed on citrus. Field surveys were carried out across 12 distinct commercial citrus environments across Limpopo and Mpumalanga provinces between 2022 and 2023. Psylloids were collected using yellow sticky traps and an insect sweep-net. Collected psylloid specimens were preserved in 70% ethanol vials and identified to the lowest possible taxonomic level (i.e. genus or species) using both published and unpublished dichotomous identification keys. Furthermore, citrus leaf samples were collected from the same plants on which psylloids were found in the orchards. Genomic DNA (gDNA) was extracted from both leaf and psylloid samples using two different DNA extraction methods. To confirm if citrus DNA could be detected in the psylloid guts, all leaf gDNA samples were initially amplified using the rbcLaF/R primer pair, targeting a 530-bp region of the chloroplast rbcL gene through the polymerase chain reaction (PCR). Lastly, gut content analysis was performed on 11 psylloid species using the same primer pair through PCR to detect citrus DNA. A total of 4,900 psylloids belonging to five families (i.e. Aphalaridae, Carsidaridae, Liviidae, Psyllidae and Triozidae), 19 genera and 47 species, were collected in citrus environments. More psylloids were recorded in Limpopo (3,754) than in Mpumalanga (1,146). The most abundant species were Pauropsylla trichaeta (1,680), followed by Diaphorina punctulata (466), Trioza erytreae (426), Diaphorina virgata (371), Euryconus sp. (358), Cacopsylla sp. (311), Retroacizzia mopanei (263), Acizzia russellae-group (240), Acizzia sp.3 (216) and Acizzia sp.2 (140). Yellow sticky traps captured 3,265 psylloids in citrus orchards, while an insect sweep-net collected 1,635 psylloids (477 from citrus orchards and 1,158 from adjacent natural vegetation). Data from the insect sweep-net revealed that 22 psylloid species were recorded on citrus. In comparison, nine psylloid species were found on Vachellia spp. and unidentified plant species separately, whereas six, three and two psylloid species were recorded on marula, Ficus sp. and mopane, respectively. The abundance, richness and community structure of psylloids differed significantly between the collection methods, provinces and among plant species. The rbcLaF/R primer pair amplified all citrus leaf gDNA samples, producing amplicons of the targeted 530-bp size. The PCR analysis of 11 psylloid species showed that the rbcLaF/R primer pair amplified plant DNA, with PCR-amplified plant DNA samples producing amplicons between 500-bp and 750-bp in the gut contents of five psyllid species: Diaphorina punctulata, Diaphorina virgata, Diaphorina zebrana, Euryconus sp. and Trioza erytreae. However, the targeted 530-bp plant DNA region was only amplified from the gut contents of Euryconus sp. and Diaphorina punctulata. This study documented psylloid diversity and community structure within commercial citrus environments. The findings indicate that the community of psylloids was diverse in citrus environments, with yellow sticky traps being more effective in monitoring different psyllid species within these environments. Furthermore, the PCR analysis detected citrus DNA in the gut contents of Euryconus sp. and Diaphorina punctulata, suggesting that they could be nibbling on citrus when their specific or main host-plants adjacent to citrus orchards are depleted. However, these insects do not lay their eggs or complete their life cycle on citrus, further confirming that citrus is not their host-plant. Thus, further studies, including Sanger sequencing of PCR-amplified plant DNA, are recommended to confirm the ingested plant species, and host-specific testing including infection trials needs to be conducted. , Thesis (MSc) -- Faculty of Science, Zoology and Entomology, 2024
- Full Text:
- Date Issued: 2024-10-11
- Authors: Moagi, Raynold
- Date: 2024-10-11
- Subjects: Citrus Diseases and pests South Africa , Candidatus Liberibacter , Psylloidea , Polymerase chain reaction , Insect trapping Equipment and supplies , Pests Control
- Language: English
- Type: Academic theses , Master's theses , text
- Identifier: http://hdl.handle.net/10962/464417 , vital:76509
- Description: Psylloids (Hemiptera: Psylloidea), constitute a group of plant sap-sucking insects, some of which are economically significant pests in different ecosystems due to their potential to transmit Gram-negative bacteria, such as the Candidatus Liberibacter species. The African citrus triozid (ACT), Trioza erytreae (Del Guercio), which transmits African citrus greening and the Asian citrus psyllid (ACP), Diaphorina citri Kuwayama, which transmits Asian citrus greening are significant threats to citrus. Asian citrus psyllid poses a global economic threat due to its ability to vector “Candidatus Liberibacter asiaticus” (CLas), which can rapidly kill citrus trees. However, both ACP and CLas are currently not present in southern Africa but are present in East and West Africa. In the Afrotropical region, 71 triozid species are known to occur and approximately 41 described Diaphorina species in southern Africa. Currently, two indigenous Diaphorina species, Diaphorina punctulata and Diaphorina zebrana have been documented to feed on citrus. There is a significant knowledge gap regarding the ecological roles of other indigenous psylloid species occurring within the citrus environments. Therefore, this study aimed to: (i) determine the diversity and community structure of psylloid species in citrus environments, and (ii) their host ranges through DNA analysis of gut contents to determine if they fed on citrus. Field surveys were carried out across 12 distinct commercial citrus environments across Limpopo and Mpumalanga provinces between 2022 and 2023. Psylloids were collected using yellow sticky traps and an insect sweep-net. Collected psylloid specimens were preserved in 70% ethanol vials and identified to the lowest possible taxonomic level (i.e. genus or species) using both published and unpublished dichotomous identification keys. Furthermore, citrus leaf samples were collected from the same plants on which psylloids were found in the orchards. Genomic DNA (gDNA) was extracted from both leaf and psylloid samples using two different DNA extraction methods. To confirm if citrus DNA could be detected in the psylloid guts, all leaf gDNA samples were initially amplified using the rbcLaF/R primer pair, targeting a 530-bp region of the chloroplast rbcL gene through the polymerase chain reaction (PCR). Lastly, gut content analysis was performed on 11 psylloid species using the same primer pair through PCR to detect citrus DNA. A total of 4,900 psylloids belonging to five families (i.e. Aphalaridae, Carsidaridae, Liviidae, Psyllidae and Triozidae), 19 genera and 47 species, were collected in citrus environments. More psylloids were recorded in Limpopo (3,754) than in Mpumalanga (1,146). The most abundant species were Pauropsylla trichaeta (1,680), followed by Diaphorina punctulata (466), Trioza erytreae (426), Diaphorina virgata (371), Euryconus sp. (358), Cacopsylla sp. (311), Retroacizzia mopanei (263), Acizzia russellae-group (240), Acizzia sp.3 (216) and Acizzia sp.2 (140). Yellow sticky traps captured 3,265 psylloids in citrus orchards, while an insect sweep-net collected 1,635 psylloids (477 from citrus orchards and 1,158 from adjacent natural vegetation). Data from the insect sweep-net revealed that 22 psylloid species were recorded on citrus. In comparison, nine psylloid species were found on Vachellia spp. and unidentified plant species separately, whereas six, three and two psylloid species were recorded on marula, Ficus sp. and mopane, respectively. The abundance, richness and community structure of psylloids differed significantly between the collection methods, provinces and among plant species. The rbcLaF/R primer pair amplified all citrus leaf gDNA samples, producing amplicons of the targeted 530-bp size. The PCR analysis of 11 psylloid species showed that the rbcLaF/R primer pair amplified plant DNA, with PCR-amplified plant DNA samples producing amplicons between 500-bp and 750-bp in the gut contents of five psyllid species: Diaphorina punctulata, Diaphorina virgata, Diaphorina zebrana, Euryconus sp. and Trioza erytreae. However, the targeted 530-bp plant DNA region was only amplified from the gut contents of Euryconus sp. and Diaphorina punctulata. This study documented psylloid diversity and community structure within commercial citrus environments. The findings indicate that the community of psylloids was diverse in citrus environments, with yellow sticky traps being more effective in monitoring different psyllid species within these environments. Furthermore, the PCR analysis detected citrus DNA in the gut contents of Euryconus sp. and Diaphorina punctulata, suggesting that they could be nibbling on citrus when their specific or main host-plants adjacent to citrus orchards are depleted. However, these insects do not lay their eggs or complete their life cycle on citrus, further confirming that citrus is not their host-plant. Thus, further studies, including Sanger sequencing of PCR-amplified plant DNA, are recommended to confirm the ingested plant species, and host-specific testing including infection trials needs to be conducted. , Thesis (MSc) -- Faculty of Science, Zoology and Entomology, 2024
- Full Text:
- Date Issued: 2024-10-11
The possible effect of insecticide drift from citrus orchards, and acute toxicity of insecticides on the biocontrol agents of Pontederia crassipes (Mart.) Solms-Laub (Pontederiaceae) established along citrus orchards in the Lowveld region of Mpumalanga Province, South Africa
- Authors: Mabuza, Mefika Michael
- Date: 2023-10-13
- Subjects: Acute toxicity , Pontederia crassipes , Biocontrol , Water hyacinth Biological control , Insecticides Toxicology , Nutrient , Citrus Diseases and pests
- Language: English
- Type: Academic theses , Master's theses , text
- Identifier: http://hdl.handle.net/10962/424468 , vital:72156
- Description: This study investigated the possible effect of insecticide drift on naturalized biological control agents of Pontederia crassipes (Mart.) Solms-Laub (Pontederiaceae), in the Lowveld region of Mpumalanga Province of South Africa. Occurrence and abundance of biocontrol agents were recorded at three sites on the Crocodile River and at three dams adjacent to citrus orchards. Leaves of P. crassipes and water samples were collected for insecticide residues and also nutrient status of the water and plants. Eccritotarsus catarinensis Carvalho (Hemiptera: Miridae), Neochetina spp. (combined) (Coleoptera: Curculionidae), and Orthogalumna terebrantis Wallwork (Sarcoptiformes: Galumnidae) were recorded with notable variation in abundance between the river and dams across regions. Insecticide residues were not detected on all leaves sampled across study regions, however, nutrients were detected with nitrate ranging between oligotrophic and mesotrophic. Phosphorus was also detected, but, neither of the nutrients correlated with the occurrence and abundance of naturalized biological control agents of P. crassipes. Bioassays were conducted to measure the effect of commonly used insecticides (viz. Methomyl and Chlorpyrifos) on the survival and feeding damage of biological control agents of P. crassipes. Survival of individual insects was recorded between 0.5 and 120 hours for Megamelus scutellaris and Neochetina eichhorniae Warner (Coleoptera: Curculionidae) adults for treatments where insecticides were topically applied onto the insects or leaves were dipped into the pesticides. Concentrations below field rates, recommended and above field rates of Methomyl and Chlorpyrifos on either exposure techniques significantly reduced survival and feeding of biocontrol agents. Methomyl was more toxic compared to Chlorpyrifos and it significantly reduced the survival of M. scutellaris and N. eichhorniae. In conclusion, in this study, population abundance of biocontrol agents of P. crassipes at the Lowveld region of Mpumalanga was not influenced by pesticide drift, but, insecticides commonly used in the citrus orchards has the potential to negatively impact naturalized biological control of P. crassipes as demonstrated by the bioassays. , Thesis (MSc) -- Faculty of Science, Zoology and Entomology, 2023
- Full Text:
- Date Issued: 2023-10-13
- Authors: Mabuza, Mefika Michael
- Date: 2023-10-13
- Subjects: Acute toxicity , Pontederia crassipes , Biocontrol , Water hyacinth Biological control , Insecticides Toxicology , Nutrient , Citrus Diseases and pests
- Language: English
- Type: Academic theses , Master's theses , text
- Identifier: http://hdl.handle.net/10962/424468 , vital:72156
- Description: This study investigated the possible effect of insecticide drift on naturalized biological control agents of Pontederia crassipes (Mart.) Solms-Laub (Pontederiaceae), in the Lowveld region of Mpumalanga Province of South Africa. Occurrence and abundance of biocontrol agents were recorded at three sites on the Crocodile River and at three dams adjacent to citrus orchards. Leaves of P. crassipes and water samples were collected for insecticide residues and also nutrient status of the water and plants. Eccritotarsus catarinensis Carvalho (Hemiptera: Miridae), Neochetina spp. (combined) (Coleoptera: Curculionidae), and Orthogalumna terebrantis Wallwork (Sarcoptiformes: Galumnidae) were recorded with notable variation in abundance between the river and dams across regions. Insecticide residues were not detected on all leaves sampled across study regions, however, nutrients were detected with nitrate ranging between oligotrophic and mesotrophic. Phosphorus was also detected, but, neither of the nutrients correlated with the occurrence and abundance of naturalized biological control agents of P. crassipes. Bioassays were conducted to measure the effect of commonly used insecticides (viz. Methomyl and Chlorpyrifos) on the survival and feeding damage of biological control agents of P. crassipes. Survival of individual insects was recorded between 0.5 and 120 hours for Megamelus scutellaris and Neochetina eichhorniae Warner (Coleoptera: Curculionidae) adults for treatments where insecticides were topically applied onto the insects or leaves were dipped into the pesticides. Concentrations below field rates, recommended and above field rates of Methomyl and Chlorpyrifos on either exposure techniques significantly reduced survival and feeding of biocontrol agents. Methomyl was more toxic compared to Chlorpyrifos and it significantly reduced the survival of M. scutellaris and N. eichhorniae. In conclusion, in this study, population abundance of biocontrol agents of P. crassipes at the Lowveld region of Mpumalanga was not influenced by pesticide drift, but, insecticides commonly used in the citrus orchards has the potential to negatively impact naturalized biological control of P. crassipes as demonstrated by the bioassays. , Thesis (MSc) -- Faculty of Science, Zoology and Entomology, 2023
- Full Text:
- Date Issued: 2023-10-13
The effect of orchard sanitation and predatory ants on the eclosion of the internal feeding pests and Oriental fruit fly, in South Africa
- Authors: Makitla, Tshepang
- Date: 2022-10-14
- Subjects: Orchards South Africa , Phytosanitation , Citrus Diseases and pests Biological control , Ants , Insects as biological pest control agents
- Language: English
- Type: Academic theses , Master's theses , text
- Identifier: http://hdl.handle.net/10962/362927 , vital:65375
- Description: There are several pests of phytosanitary concern in the citrus industry in South Africa. Orchard sanitation can play an important role in suppressing the populations of these pests, however there are little data on the efficacy of sanitation techniques. Therefore, the current study investigated the effect of fruit disposal techniques and burying depths on the eclosion of the most important pests of citrus in South Africa, false codling moth Thaumatotibia leucotreta Meyrick (Lepidoptera: Tortricidae), Mediterranean fruit fly or Medfly Ceratitis capitata Wiedemann (Diptera: Tephritidae), Natal fruit fly Ceratitis rosa Karsh (Diptera: Tephritidae), and Oriental fruit fly Bactrocera dorsalis Hendel (Diptera: Tephritidae). Abscised C. sinensis fruits were inoculated with larvae of T. leucotreta, and eggs of C. capitata, C. rosa, and B. dorsalis, before being disposed as pulped, or whole, and buried at different depths (0 cm, 5 cm, 25 cm, and 50 cm). Abundance and richness of predatory ants were monitored using pitfall traps to ascertain their effect on the mortality of the immature stages of these pests. Ceratitis capitata and C. rosa failed to eclose from the inoculated fruits disposed at different depths, however, T. leucotreta and B. dorsalis adults did eclosed. Significantly fewer B. dorsalis eclosed from fruits that were pulped in comparison to eclosion where the fruit were left whole (F (3, 16) = 11.45, P < 0.01). Furthermore, depth of burial had a significant effect on the number of eclosed adults of Drosophila sp (F (3, 112) = 3.43, P < 0.01). Burying fruits at 50 cm suppressed the eclosion of all the internal feeding pests tested. Twenty-seven thousand seventy-three individual ants (Hymenoptera: Formicidae) were sampled from the same plots as used above, with at least 47% and 53% sampled from plots where pulped and whole C. sinensis fruits were disposed of, respectively. The ants were identified to morphospecies which included Pheidole1, Pheidole2, Formicinae1, Formicinae2, Formicinae3, and Myrmicinae1. The disposal of the inoculated C. sinensis fruits either as pulped or whole and burying at different depths significantly suppressed and/or delayed the eclosion of either of the tested internal feeding pests of citrus. Although, predacious ants were sampled from the same treatment plots they did not affect the survival or eclosion of the tested pests, and this could be attributed to the application of the slow toxic ant bait. Therefore, based on the observed results B. dorsalis adults showed the ability to eclose from 50 cm depth where fruit was either disposed as pulped or whole, thus, citrus farmers are advised to use hammer mill that will finely crush sanitised fruit, and/or bury fruit beyond 50 cm depth to prevent the adult od this pest from eclosing. , Thesis (MSc) -- Faculty of Science, Zoology and Entomology, 2022
- Full Text:
- Date Issued: 2022-10-14
- Authors: Makitla, Tshepang
- Date: 2022-10-14
- Subjects: Orchards South Africa , Phytosanitation , Citrus Diseases and pests Biological control , Ants , Insects as biological pest control agents
- Language: English
- Type: Academic theses , Master's theses , text
- Identifier: http://hdl.handle.net/10962/362927 , vital:65375
- Description: There are several pests of phytosanitary concern in the citrus industry in South Africa. Orchard sanitation can play an important role in suppressing the populations of these pests, however there are little data on the efficacy of sanitation techniques. Therefore, the current study investigated the effect of fruit disposal techniques and burying depths on the eclosion of the most important pests of citrus in South Africa, false codling moth Thaumatotibia leucotreta Meyrick (Lepidoptera: Tortricidae), Mediterranean fruit fly or Medfly Ceratitis capitata Wiedemann (Diptera: Tephritidae), Natal fruit fly Ceratitis rosa Karsh (Diptera: Tephritidae), and Oriental fruit fly Bactrocera dorsalis Hendel (Diptera: Tephritidae). Abscised C. sinensis fruits were inoculated with larvae of T. leucotreta, and eggs of C. capitata, C. rosa, and B. dorsalis, before being disposed as pulped, or whole, and buried at different depths (0 cm, 5 cm, 25 cm, and 50 cm). Abundance and richness of predatory ants were monitored using pitfall traps to ascertain their effect on the mortality of the immature stages of these pests. Ceratitis capitata and C. rosa failed to eclose from the inoculated fruits disposed at different depths, however, T. leucotreta and B. dorsalis adults did eclosed. Significantly fewer B. dorsalis eclosed from fruits that were pulped in comparison to eclosion where the fruit were left whole (F (3, 16) = 11.45, P < 0.01). Furthermore, depth of burial had a significant effect on the number of eclosed adults of Drosophila sp (F (3, 112) = 3.43, P < 0.01). Burying fruits at 50 cm suppressed the eclosion of all the internal feeding pests tested. Twenty-seven thousand seventy-three individual ants (Hymenoptera: Formicidae) were sampled from the same plots as used above, with at least 47% and 53% sampled from plots where pulped and whole C. sinensis fruits were disposed of, respectively. The ants were identified to morphospecies which included Pheidole1, Pheidole2, Formicinae1, Formicinae2, Formicinae3, and Myrmicinae1. The disposal of the inoculated C. sinensis fruits either as pulped or whole and burying at different depths significantly suppressed and/or delayed the eclosion of either of the tested internal feeding pests of citrus. Although, predacious ants were sampled from the same treatment plots they did not affect the survival or eclosion of the tested pests, and this could be attributed to the application of the slow toxic ant bait. Therefore, based on the observed results B. dorsalis adults showed the ability to eclose from 50 cm depth where fruit was either disposed as pulped or whole, thus, citrus farmers are advised to use hammer mill that will finely crush sanitised fruit, and/or bury fruit beyond 50 cm depth to prevent the adult od this pest from eclosing. , Thesis (MSc) -- Faculty of Science, Zoology and Entomology, 2022
- Full Text:
- Date Issued: 2022-10-14
- «
- ‹
- 1
- ›
- »