Keychains and preferential fuzzy sets with applications
- Authors: Mahlasela, Zuko
- Date: 2024-04-05
- Subjects: Uncatalogued
- Language: English
- Type: Academic theses , Doctoral theses , text
- Identifier: http://hdl.handle.net/10962/435933 , vital:73213 , DOI 10.21504/10962/435935
- Description: In this thesis, we study the preferentiality behaviour of choices under uncertainties using keychains, where a keychain is defined as an (n+ 1)-tuple of non-increasing real numbers in the unit interval, I= [0, 1]. We look at the representations of uncertainties or sets defined by vague properties using the idea of keychains, pins and pinned flags. We then apply the ideas of preferential fuzzy sets to voting patterns, economics and decision making. For voting patterns, we simulate mock trials to investigate the behaviours of choices of different individuals, the outcomes of such voting and make specific conclusions about voting strategies. It can be argued that preferentiality in voting can enhance the democratic processes in national elections. This thesis contains various representations of keychains such as binary digits, weight order, lattice and simplex representations. Another useful aspect of keychains and preferential fuzzy sets is to study the outcomes of decision making linking it to the study of keychains and finite fuzzy sets. We envisage that this study will throw light on computational aspects of any countable situations. , Thesis (PhD) -- Faculty of Science, Mathematics, 2024
- Full Text:
- Date Issued: 2024-04-05
- Authors: Mahlasela, Zuko
- Date: 2024-04-05
- Subjects: Uncatalogued
- Language: English
- Type: Academic theses , Doctoral theses , text
- Identifier: http://hdl.handle.net/10962/435933 , vital:73213 , DOI 10.21504/10962/435935
- Description: In this thesis, we study the preferentiality behaviour of choices under uncertainties using keychains, where a keychain is defined as an (n+ 1)-tuple of non-increasing real numbers in the unit interval, I= [0, 1]. We look at the representations of uncertainties or sets defined by vague properties using the idea of keychains, pins and pinned flags. We then apply the ideas of preferential fuzzy sets to voting patterns, economics and decision making. For voting patterns, we simulate mock trials to investigate the behaviours of choices of different individuals, the outcomes of such voting and make specific conclusions about voting strategies. It can be argued that preferentiality in voting can enhance the democratic processes in national elections. This thesis contains various representations of keychains such as binary digits, weight order, lattice and simplex representations. Another useful aspect of keychains and preferential fuzzy sets is to study the outcomes of decision making linking it to the study of keychains and finite fuzzy sets. We envisage that this study will throw light on computational aspects of any countable situations. , Thesis (PhD) -- Faculty of Science, Mathematics, 2024
- Full Text:
- Date Issued: 2024-04-05
Finite fuzzy sets, keychains and their applications
- Authors: Mahlasela, Zuko
- Date: 2009
- Subjects: Fuzzy sets , Finite groups , Lattice theory , Economics -- Mathematical models
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: vital:5406 , http://hdl.handle.net/10962/d1005220 , Fuzzy sets , Finite groups , Lattice theory , Economics -- Mathematical models
- Description: The idea of keychains, an (n+1)-tuple of non-increasing real numbers in the unit interval always including 1, naturally arises in study of finite fuzzy set theory. They are a useful concept in modeling ideas of uncertainty especially those that arise in Economics, Social Sciences, Statistics and other subjects. In this thesis we define and study some basic properties of keychains with reference to Partially Ordered Sets, Lattices, Chains and Finite Fuzzy Sets. We then examine the role of keychains and their lattice diagrams in representing uncertainties that arise in such problems as in preferential voting patterns, outcomes of competitions and in Economics - Preference Relations.
- Full Text:
- Date Issued: 2009
- Authors: Mahlasela, Zuko
- Date: 2009
- Subjects: Fuzzy sets , Finite groups , Lattice theory , Economics -- Mathematical models
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: vital:5406 , http://hdl.handle.net/10962/d1005220 , Fuzzy sets , Finite groups , Lattice theory , Economics -- Mathematical models
- Description: The idea of keychains, an (n+1)-tuple of non-increasing real numbers in the unit interval always including 1, naturally arises in study of finite fuzzy set theory. They are a useful concept in modeling ideas of uncertainty especially those that arise in Economics, Social Sciences, Statistics and other subjects. In this thesis we define and study some basic properties of keychains with reference to Partially Ordered Sets, Lattices, Chains and Finite Fuzzy Sets. We then examine the role of keychains and their lattice diagrams in representing uncertainties that arise in such problems as in preferential voting patterns, outcomes of competitions and in Economics - Preference Relations.
- Full Text:
- Date Issued: 2009
The principle of inclusion-exclusion and möbius function as counting techniques in finite fuzzy subsets
- Authors: Talwanga, Matiki
- Date: 2009
- Subjects: Fuzzy logic , Fuzzy sets , Fuzzy systems , Möbius function
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: vital:5413 , http://hdl.handle.net/10962/d1005227 , Fuzzy logic , Fuzzy sets , Fuzzy systems , Möbius function
- Description: The broad goal in this thesis is to enumerate elements and fuzzy subsets of a finite set enjoying some useful properties through the well-known counting technique of the principle of inclusion-exclusion. We consider the set of membership values to be finite and uniformly spaced in the real unit interval. Further we define an equivalence relation with regards to the cardinalities of fuzzy subsets providing the Möbius function and Möbius inversion in that context.
- Full Text:
- Date Issued: 2009
- Authors: Talwanga, Matiki
- Date: 2009
- Subjects: Fuzzy logic , Fuzzy sets , Fuzzy systems , Möbius function
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: vital:5413 , http://hdl.handle.net/10962/d1005227 , Fuzzy logic , Fuzzy sets , Fuzzy systems , Möbius function
- Description: The broad goal in this thesis is to enumerate elements and fuzzy subsets of a finite set enjoying some useful properties through the well-known counting technique of the principle of inclusion-exclusion. We consider the set of membership values to be finite and uniformly spaced in the real unit interval. Further we define an equivalence relation with regards to the cardinalities of fuzzy subsets providing the Möbius function and Möbius inversion in that context.
- Full Text:
- Date Issued: 2009
A study of the existence of equilibrium in mathematical economics
- Authors: Xotyeni, Zukisa Gqabi
- Date: 2008
- Subjects: Equilibrium (Economics) -- Mathematical models , Macroeconomics -- Mathematical models , Economics -- Mathematical models , Welfare economics -- Mathematical models , Lattice theory , Economics, Mathematical
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: vital:5418 , http://hdl.handle.net/10962/d1005232 , Equilibrium (Economics) -- Mathematical models , Macroeconomics -- Mathematical models , Economics -- Mathematical models , Welfare economics -- Mathematical models , Lattice theory , Economics, Mathematical
- Description: In this thesis we define and study the existence of an equilibrium situation in which producers maximize their profits relative to the production vectors in their production sets, consumers satisfy their preferences in their consumption sets under certain budget constraint, and for every commodity total demand equals total supply. This competitive equilibrium situation is referred to as the Walrasian equilibrium. The existence of this equilibrium is investigated from a various mathematical points of view. These include microeconomic theory, simplicial spaces, global analysis and lattice theory.
- Full Text:
- Date Issued: 2008
- Authors: Xotyeni, Zukisa Gqabi
- Date: 2008
- Subjects: Equilibrium (Economics) -- Mathematical models , Macroeconomics -- Mathematical models , Economics -- Mathematical models , Welfare economics -- Mathematical models , Lattice theory , Economics, Mathematical
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: vital:5418 , http://hdl.handle.net/10962/d1005232 , Equilibrium (Economics) -- Mathematical models , Macroeconomics -- Mathematical models , Economics -- Mathematical models , Welfare economics -- Mathematical models , Lattice theory , Economics, Mathematical
- Description: In this thesis we define and study the existence of an equilibrium situation in which producers maximize their profits relative to the production vectors in their production sets, consumers satisfy their preferences in their consumption sets under certain budget constraint, and for every commodity total demand equals total supply. This competitive equilibrium situation is referred to as the Walrasian equilibrium. The existence of this equilibrium is investigated from a various mathematical points of view. These include microeconomic theory, simplicial spaces, global analysis and lattice theory.
- Full Text:
- Date Issued: 2008
A study of fuzzy sets and systems with applications to group theory and decision making
- Authors: Gideon, Frednard
- Date: 2006
- Subjects: Fuzzy sets , Fuzzy systems , Abelian groups , Decision making
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: vital:5417 , http://hdl.handle.net/10962/d1005231 , Fuzzy sets , Fuzzy systems , Abelian groups , Decision making
- Description: In this study we apply the knowledge of fuzzy sets to group structures and also to decision-making implications. We study fuzzy subgroups of finite abelian groups. We set G = Z[subscript p[superscript n]] + Z[subscript q[superscript m]]. The classification of fuzzy subgroups of G using equivalence classes is introduced. First, we present equivalence relations on fuzzy subsets of X, and then extend it to the study of equivalence relations of fuzzy subgroups of a group G. This is then followed by the notion of flags and keychains projected as tools for enumerating fuzzy subgroups of G. In addition to this, we use linear ordering of the lattice of subgroups to characterize the maximal chains of G. Then we narrow the gap between group theory and decision-making using relations. Finally, a theory of the decision-making process in a fuzzy environment leads to a fuzzy version of capital budgeting. We define the goal, constraints and decision and show how they conflict with each other using membership function implications. We establish sets of intervals for projecting decision boundaries in general. We use the knowledge of triangular fuzzy numbers which are restricted field of fuzzy logic to evaluate investment projections.
- Full Text:
- Date Issued: 2006
- Authors: Gideon, Frednard
- Date: 2006
- Subjects: Fuzzy sets , Fuzzy systems , Abelian groups , Decision making
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: vital:5417 , http://hdl.handle.net/10962/d1005231 , Fuzzy sets , Fuzzy systems , Abelian groups , Decision making
- Description: In this study we apply the knowledge of fuzzy sets to group structures and also to decision-making implications. We study fuzzy subgroups of finite abelian groups. We set G = Z[subscript p[superscript n]] + Z[subscript q[superscript m]]. The classification of fuzzy subgroups of G using equivalence classes is introduced. First, we present equivalence relations on fuzzy subsets of X, and then extend it to the study of equivalence relations of fuzzy subgroups of a group G. This is then followed by the notion of flags and keychains projected as tools for enumerating fuzzy subgroups of G. In addition to this, we use linear ordering of the lattice of subgroups to characterize the maximal chains of G. Then we narrow the gap between group theory and decision-making using relations. Finally, a theory of the decision-making process in a fuzzy environment leads to a fuzzy version of capital budgeting. We define the goal, constraints and decision and show how they conflict with each other using membership function implications. We establish sets of intervals for projecting decision boundaries in general. We use the knowledge of triangular fuzzy numbers which are restricted field of fuzzy logic to evaluate investment projections.
- Full Text:
- Date Issued: 2006
Case studies of equivalent fuzzy subgroups of finite abelian groups
- Authors: Ngcibi, Sakhile L
- Date: 2002
- Subjects: Abelian groups , Fuzzy sets
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: vital:5401 , http://hdl.handle.net/10962/d1005215 , Abelian groups , Fuzzy sets
- Description: The broad goal is to classify all fuzzy subgroups of a given type of finite group. P.S. Das introduced the ntion of level subgroups to characterize fuzzy subgroups of finite grouops. The notion of equivalence of fuzzy subgroups which is used in this thesis was first introduced by Murali and Makamba. We use this equivalence to charterise fuzzy subgroups of inite Abelian groups (p-groups in particular) for a specified prime p. We characterize some crisp subgroups of p-groups and investigate some cases on equi valent fuzzy subgroups.
- Full Text:
- Date Issued: 2002
- Authors: Ngcibi, Sakhile L
- Date: 2002
- Subjects: Abelian groups , Fuzzy sets
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: vital:5401 , http://hdl.handle.net/10962/d1005215 , Abelian groups , Fuzzy sets
- Description: The broad goal is to classify all fuzzy subgroups of a given type of finite group. P.S. Das introduced the ntion of level subgroups to characterize fuzzy subgroups of finite grouops. The notion of equivalence of fuzzy subgroups which is used in this thesis was first introduced by Murali and Makamba. We use this equivalence to charterise fuzzy subgroups of inite Abelian groups (p-groups in particular) for a specified prime p. We characterize some crisp subgroups of p-groups and investigate some cases on equi valent fuzzy subgroups.
- Full Text:
- Date Issued: 2002
- «
- ‹
- 1
- ›
- »