The synthesis and characterisation of Sn(IV) porphyrin derivatives and their potential application in anti-cancer and antimicrobial photodynamic therapy
- Authors: Dingiswayo, Somila
- Date: 2021-10
- Subjects: Porphyrins , Photochemotherapy , Cancer Photochemotherapy , Active oxygen Physiological effect , Aromaticity (Chemistry) , Tetrapyrroles , Magnetic circular dichroism , Corroles , Chlorins , Photodynamic antimicrobial chemotherapy (PACT)
- Language: English
- Type: Masters theses , text
- Identifier: http://hdl.handle.net/10962/188843 , vital:44791
- Description: In photodynamic therapy (PDT), the activation of light-sensitive drugs in tumour cells produces reactive singlet oxygen species, which cause tumour destruction through a cascade of biochemical reactions. Over the years, the wavelength of activation has been shown to be a critical factor in the penetration of light. Hence the properties of photosensitiser dyes in this context shape their ability to treat deep-seated tumours. In this study, the synthesis, structural characterisation and photophysicochemical properties of a series of Sn(IV) porphyrins with meso-methylthiophenyl rings that have been prepared to study their PDT and photodynamic antimicrobial chemotherapy (PACT) activity properties are reported. The series of Sn(IV) complexes is comprised of a porphyrin (1-Sn), a corrole (2-Sn), a chlorin (3-Sn) and an N-confused porphyrin (4-Sn). Herein, the low symmetry Sn(IV) porphyrin derivatives are shown to have excellent singlet oxygen generation capabilities, and lifetimes of the triplet excited states were in the microsecond range. For example, 4-Sn had a singlet oxygen quantum yield (ФΔ) and an excited triplet state lifetime (τT) of 0.88 and 27 μs, respectively. The complexes were studied using UV-visible and magnetic circular dichroism (MCD) spectroscopies. Interestingly, the positive-to-negative sign sequences of the Faraday B0 terms of 2-Sn and 3-Sn reveal that the structural modifications involved break the degeneracy of the MOs derived from the 1eg* LUMO of the porphyrin 1-Sn. In contrast, a conventional negative-to-positive sign sequence is observed for 4-Sn, since the confusion of a pyrrole moiety also results in a large separation of the 1a1u and 1a2u MOs of the porphyrin 1-Sn that are derived from the HOMO of a C16H162−parent hydrocarbon perimeter. The trends in the electronic structures of the Sn(IV) complexes were further investigated through a series of time-dependent density functional theory calculations, so that the suitability of the different types of complex for use in singlet oxygen applications could be further explored. During in vitro photodynamic antimicrobial chemotherapy (PACT) studies, chlorin derivative 3-Sn had the highest activity towards S. aureus and E. coli with log10 reductions of 10.5 and 8.74, respectively. The unusually high activity of 3-Sn against E.coli suggests that the interaction of neutral photosensitisers with gram-negativebacteria is more complex than previously understood. Anti-cancer PDT studies demonstrated that the photosensitisers had negligible dark cytotoxicity. Upon photoirradiation, the Sn(IV) complexes consistently exhibited IC50 values lower than 15 μM against MCF-7 adenocarcinoma cells. An IC50 value of 1.4 μM for 4-Sn after activation at the deep-red region of the spectrum demonstrates that complexes of this type merit further in-depth investigation. The results provide evidence that the low-symmetry Sn(IV) chlorins and N-confused porphyrins merit further in-depth study for use in singlet oxygen applications. , Thesis (MSc) -- Faculty of Science, Chemistry, 2021
- Full Text:
- Date Issued: 2021-10
- Authors: Dingiswayo, Somila
- Date: 2021-10
- Subjects: Porphyrins , Photochemotherapy , Cancer Photochemotherapy , Active oxygen Physiological effect , Aromaticity (Chemistry) , Tetrapyrroles , Magnetic circular dichroism , Corroles , Chlorins , Photodynamic antimicrobial chemotherapy (PACT)
- Language: English
- Type: Masters theses , text
- Identifier: http://hdl.handle.net/10962/188843 , vital:44791
- Description: In photodynamic therapy (PDT), the activation of light-sensitive drugs in tumour cells produces reactive singlet oxygen species, which cause tumour destruction through a cascade of biochemical reactions. Over the years, the wavelength of activation has been shown to be a critical factor in the penetration of light. Hence the properties of photosensitiser dyes in this context shape their ability to treat deep-seated tumours. In this study, the synthesis, structural characterisation and photophysicochemical properties of a series of Sn(IV) porphyrins with meso-methylthiophenyl rings that have been prepared to study their PDT and photodynamic antimicrobial chemotherapy (PACT) activity properties are reported. The series of Sn(IV) complexes is comprised of a porphyrin (1-Sn), a corrole (2-Sn), a chlorin (3-Sn) and an N-confused porphyrin (4-Sn). Herein, the low symmetry Sn(IV) porphyrin derivatives are shown to have excellent singlet oxygen generation capabilities, and lifetimes of the triplet excited states were in the microsecond range. For example, 4-Sn had a singlet oxygen quantum yield (ФΔ) and an excited triplet state lifetime (τT) of 0.88 and 27 μs, respectively. The complexes were studied using UV-visible and magnetic circular dichroism (MCD) spectroscopies. Interestingly, the positive-to-negative sign sequences of the Faraday B0 terms of 2-Sn and 3-Sn reveal that the structural modifications involved break the degeneracy of the MOs derived from the 1eg* LUMO of the porphyrin 1-Sn. In contrast, a conventional negative-to-positive sign sequence is observed for 4-Sn, since the confusion of a pyrrole moiety also results in a large separation of the 1a1u and 1a2u MOs of the porphyrin 1-Sn that are derived from the HOMO of a C16H162−parent hydrocarbon perimeter. The trends in the electronic structures of the Sn(IV) complexes were further investigated through a series of time-dependent density functional theory calculations, so that the suitability of the different types of complex for use in singlet oxygen applications could be further explored. During in vitro photodynamic antimicrobial chemotherapy (PACT) studies, chlorin derivative 3-Sn had the highest activity towards S. aureus and E. coli with log10 reductions of 10.5 and 8.74, respectively. The unusually high activity of 3-Sn against E.coli suggests that the interaction of neutral photosensitisers with gram-negativebacteria is more complex than previously understood. Anti-cancer PDT studies demonstrated that the photosensitisers had negligible dark cytotoxicity. Upon photoirradiation, the Sn(IV) complexes consistently exhibited IC50 values lower than 15 μM against MCF-7 adenocarcinoma cells. An IC50 value of 1.4 μM for 4-Sn after activation at the deep-red region of the spectrum demonstrates that complexes of this type merit further in-depth investigation. The results provide evidence that the low-symmetry Sn(IV) chlorins and N-confused porphyrins merit further in-depth study for use in singlet oxygen applications. , Thesis (MSc) -- Faculty of Science, Chemistry, 2021
- Full Text:
- Date Issued: 2021-10
Evaluation of metallophthalocyanine functionalized photocatalytic asymmetric polymer membranes for pollution control and antimicrobial activity
- Mafukidze, Donovan Musizvinoda Chidyamurimi
- Authors: Mafukidze, Donovan Musizvinoda Chidyamurimi
- Date: 2021
- Subjects: Photosensitizing compounds , Water -- Purification -- Photocatalysis , Phthalocyanines , Polymeric membranes , Porphyrins
- Language: English
- Type: text , Thesis , Doctoral , PhD
- Identifier: http://hdl.handle.net/10962/171357 , vital:42052 , 10.21504/10962/171357
- Description: The conceptualisation of photosensitizing water treatment polymer membranes using phthalocyanine based photosensitizers is reported in this thesis. The key to successful preparation of stable photoactive polymer membranes was established as the covalent anchorage of the photosensitizer to a polymer, which was proven by singlet oxygen generation by the membranes without photosensitizer deterioration. Despite this limitation, the covalent linkage-incapable unsubstituted zinc (II) phthalocyanine (complex 2) was applied as a nanoconjugate of graphene quantum dots (2π(GQDs)). 2π(GQDs) was formed through π-π stacking, and was then covalently anchored, as a proof of concept. This concept was also applied to 2-(4-carboxyphenoxy) phthalocyaninato zinc (II) (complex 3) which is capable of covalent linkage but proved to deteriorate the efficiency of singlet oxygen formation with comparison to the covalent conjugates. Singlet oxygen generation by functionalized polymer membranes rendered them photocatalytic in the degradation of organic pollutants and microorganisms in water. Organic pollutant degradation capability was exemplified by 2π(GQDs) and a porphyrin-phthalocyanine heterodyad (complex 10) functionalized membranes (2π(GQDs)-memb and 10-memb respectively), where a MPc loading of approximately 0.139 μmol MPc/g of membrane was able to achieve a 4-chlorophenol degradation rate of 3.77 × 10−6 mol L−1 min−1 in a second order reaction with an initial 4-chlorophenol concentration of 3.24 × 10−4 mol L−1 for 2π(GQDs)-memb as an example. Antibacterial studies against S.aureus using a quaternized MPc and conjugates of silver triangular nanoprisms with zinc (II) and indium (III) MPcs showed note-worthy improvements in photodynamic antimicrobial chemotherapy (PACT) activity in comparison to the unquaternized MPc precursor, and the free zinc and indium MPcs respectively. Functionalization of polymer membranes with these higher activity photosensitizers translated to the formation of potentially superior biological fouling resistant membranes. The use of porphyrin-phthalocyanine polynuclei arrays (complex 10) in polymer membrane functionalization resulted in the use of a wider wavelength range (white light). The findings from this work as a whole, thus presents the potential applicability of phthalocyanine functionalized polymer membranes in water treatment technology.
- Full Text:
- Date Issued: 2021
- Authors: Mafukidze, Donovan Musizvinoda Chidyamurimi
- Date: 2021
- Subjects: Photosensitizing compounds , Water -- Purification -- Photocatalysis , Phthalocyanines , Polymeric membranes , Porphyrins
- Language: English
- Type: text , Thesis , Doctoral , PhD
- Identifier: http://hdl.handle.net/10962/171357 , vital:42052 , 10.21504/10962/171357
- Description: The conceptualisation of photosensitizing water treatment polymer membranes using phthalocyanine based photosensitizers is reported in this thesis. The key to successful preparation of stable photoactive polymer membranes was established as the covalent anchorage of the photosensitizer to a polymer, which was proven by singlet oxygen generation by the membranes without photosensitizer deterioration. Despite this limitation, the covalent linkage-incapable unsubstituted zinc (II) phthalocyanine (complex 2) was applied as a nanoconjugate of graphene quantum dots (2π(GQDs)). 2π(GQDs) was formed through π-π stacking, and was then covalently anchored, as a proof of concept. This concept was also applied to 2-(4-carboxyphenoxy) phthalocyaninato zinc (II) (complex 3) which is capable of covalent linkage but proved to deteriorate the efficiency of singlet oxygen formation with comparison to the covalent conjugates. Singlet oxygen generation by functionalized polymer membranes rendered them photocatalytic in the degradation of organic pollutants and microorganisms in water. Organic pollutant degradation capability was exemplified by 2π(GQDs) and a porphyrin-phthalocyanine heterodyad (complex 10) functionalized membranes (2π(GQDs)-memb and 10-memb respectively), where a MPc loading of approximately 0.139 μmol MPc/g of membrane was able to achieve a 4-chlorophenol degradation rate of 3.77 × 10−6 mol L−1 min−1 in a second order reaction with an initial 4-chlorophenol concentration of 3.24 × 10−4 mol L−1 for 2π(GQDs)-memb as an example. Antibacterial studies against S.aureus using a quaternized MPc and conjugates of silver triangular nanoprisms with zinc (II) and indium (III) MPcs showed note-worthy improvements in photodynamic antimicrobial chemotherapy (PACT) activity in comparison to the unquaternized MPc precursor, and the free zinc and indium MPcs respectively. Functionalization of polymer membranes with these higher activity photosensitizers translated to the formation of potentially superior biological fouling resistant membranes. The use of porphyrin-phthalocyanine polynuclei arrays (complex 10) in polymer membrane functionalization resulted in the use of a wider wavelength range (white light). The findings from this work as a whole, thus presents the potential applicability of phthalocyanine functionalized polymer membranes in water treatment technology.
- Full Text:
- Date Issued: 2021
In vitro susceptibility of Staphylococcus aureus to porphyrin-silver mediated photodynamic antimicrobial chemotherapy
- Authors: Shabangu, Samuel Malewa
- Date: 2020
- Subjects: Porphyrins , Nanoparticles , Photochemotherapy , Drug resistance in microorganisms , Staphylococcus aureus
- Language: English
- Type: text , Thesis , Masters , MSc
- Identifier: http://hdl.handle.net/10962/167476 , vital:41484
- Description: This work reports on the syntheses and characterization of symmetrical and unsymmetrical porphyrin complexes namely, 5,10,15,20-tetra(4-pyridyl)-porphyrinato zinc(II) (1), 5,10,15,20-tetrathienyl porphyrinato zinc(II) (2), 5-(4-hydroxyphenyl)-10, 15, 20-tris(2-thienyl) porphyrinato zinc(II) (3), 5-(4-carboxyphenyl)-10,15,20-tris(pentafluorophenyl)- porphyrinato zinc(II) (4), 5-(4-carboxyphenyl)-10,15,20-triphenyl-porphyrinato zinc(II) (5) and 5-(4-carboxyphenyl)-10, 15, 20-tris(2-thienyl)-porphyrinato zinc(II) (6). The synthesis of silver nanoparticles (AgNPs) was also undertaken in this research work. Complexes 1, 2, 3 and 6 were linked to oleic acid/oleylamine functionalized nanoparticles via self-assembly and 4-6 were linked via covalent interaction through an amide bond to glutathione capped AgNPs. The effect of nature of bond along with symmetry were investigated, of interest were the five membered thienyl substituents. The photophysical and photochemical behaviour of the complexes and their conjugates with AgNPs were investigated in dimethylformamide. The porphyrin and AgNPs conjugates afforded an increase in singlet oxygen quantum yield. Complexes 1-6 and their conjugates were used for photodynamic antimicrobial chemotherapy of Staphylococcus aureus. The antimicrobial studies were done in two different concentrations of 0.36 and 2.0 μg/mL. The thienyl substituted porphyrin complexes and their conjugates gave better photodynamic activity as compared to phenyl analogues
- Full Text:
- Date Issued: 2020
- Authors: Shabangu, Samuel Malewa
- Date: 2020
- Subjects: Porphyrins , Nanoparticles , Photochemotherapy , Drug resistance in microorganisms , Staphylococcus aureus
- Language: English
- Type: text , Thesis , Masters , MSc
- Identifier: http://hdl.handle.net/10962/167476 , vital:41484
- Description: This work reports on the syntheses and characterization of symmetrical and unsymmetrical porphyrin complexes namely, 5,10,15,20-tetra(4-pyridyl)-porphyrinato zinc(II) (1), 5,10,15,20-tetrathienyl porphyrinato zinc(II) (2), 5-(4-hydroxyphenyl)-10, 15, 20-tris(2-thienyl) porphyrinato zinc(II) (3), 5-(4-carboxyphenyl)-10,15,20-tris(pentafluorophenyl)- porphyrinato zinc(II) (4), 5-(4-carboxyphenyl)-10,15,20-triphenyl-porphyrinato zinc(II) (5) and 5-(4-carboxyphenyl)-10, 15, 20-tris(2-thienyl)-porphyrinato zinc(II) (6). The synthesis of silver nanoparticles (AgNPs) was also undertaken in this research work. Complexes 1, 2, 3 and 6 were linked to oleic acid/oleylamine functionalized nanoparticles via self-assembly and 4-6 were linked via covalent interaction through an amide bond to glutathione capped AgNPs. The effect of nature of bond along with symmetry were investigated, of interest were the five membered thienyl substituents. The photophysical and photochemical behaviour of the complexes and their conjugates with AgNPs were investigated in dimethylformamide. The porphyrin and AgNPs conjugates afforded an increase in singlet oxygen quantum yield. Complexes 1-6 and their conjugates were used for photodynamic antimicrobial chemotherapy of Staphylococcus aureus. The antimicrobial studies were done in two different concentrations of 0.36 and 2.0 μg/mL. The thienyl substituted porphyrin complexes and their conjugates gave better photodynamic activity as compared to phenyl analogues
- Full Text:
- Date Issued: 2020
- «
- ‹
- 1
- ›
- »