Reproductive isolation mechanisms of two cryptic species of Eccritotarsus (Hemiptera: Miridae), biological control agents of water hyacinth, Eichhornia crassipes (Martius) Solms-Laubach (Pontederiaceae)
- Authors: Mnguni, Sandiso
- Date: 2019
- Subjects: Eccritotarsus , Meridae , Noxious weeds -- Biological control -- South Africa , Aquatic weeds -- Biological control -- South Africa , Water hyacinth -- Biological control -- South Africa , Biological pest control agents
- Language: English
- Type: text , Thesis , Masters , MSc
- Identifier: http://hdl.handle.net/10962/68133 , vital:29202
- Description: Water hyacinth, Eichhornia crassipes (Martius) Solms-Laubach (Pontederiaceae), is one of the world’s worst alien invasive plants. It is indigenous to the Amazon basin in South America but has become a problematic alien invasive in other parts of the world. As such, several host-specific biological control agents have been sourced from the native distributions in South America and have been released to control this plant where it has become problematic. Two of these agents include the geographically and reproductively isolated cryptic species of Eccritotarsus (Hemiptera: Miridae). One of these species was collected in the upper reaches of the Amazon River in Peru, while the other was collected over 3500km away from that site, in Florianopolis, southern Brazil. These cryptic species were thought to be a single species until recently, when DNA barcoding indicated that they were likely to be two species, and the species status has now been confirmed by interbreeding experiments and detailed morphological studies. The Brazilian population remains Eccritotarsus catarinensis (Carvalho), while the Peruvian population is now known as Eccritotarsus eichhorniae (Henry). The aim of this project was to investigate the mating behaviour and other behavioural traits of the two species that have resulted in reproductive isolation, and which could have led to speciation. In addition, investigations involving analysis of chemical compound compositions of the two species aimed to determine the extent to which the compounds played a role in the development and maintenance of reproductive isolation. To achieve the aims, behavioural-observation experiments were conducted in the form of no-choice, bi-choice and multi-choice tests in 1:1, 2:1 and 3:1 sex ratio assessments, both within and between species. Chemical compound compositions of E. catarinensis and E. eichhorniae were also assessed using Nuclear Magnetic Resonance (NMR), Solid-phase micro-extraction (SPME) and Gas-Chromatography Mass-Spectrometry (GC-MS) techniques. In no-choice experiments, the highest number of single and multiple copula incidences, and average total copula duration was found within species while copulation between species was much rarer. In bi-choice experiments, E. eichhorniae females and E. catarinensis males only chose to mate with their respective conspecifics, and within species copulations continued to have higher average total copula duration. In multi-choice experiments, the highest number of single and multiple copula incidences and average total copula duration was also found within species. GC-MS analysis suggested that E. catarinensis females and E. eichhorniae males have unique chemical compounds missing in their conspecifics and same sex of the other species. Further analysis suggested that E. catarinensis females and E. eichhorniae males have similar chemical compound compositions, whereas as E. eichhorniae females and E. catarinensis males have similar chemical compound compositions. These results suggest that there are behavioural differences that led to the development and maintenance of prezygotic reproductive isolation mechanisms, and that this is probably driven by pheromones in chemical compound compositions. These two species were geographically isolated in the native range and the populations have diverged to the point that they are now reproductively incompatible and therefore, distinct species. The main driver of the speciation is most likely mate recognition and attraction, as only reproductively important traits such as pheromones, genitalia, the scent glands and antennae have changed, while other traits, including host range and morphology, have remained remarkably stable. This provides evidence that differences in sexual selection in isolated populations may be important drivers of speciation and reproductive isolation in cryptic species.
- Full Text:
- Authors: Mnguni, Sandiso
- Date: 2019
- Subjects: Eccritotarsus , Meridae , Noxious weeds -- Biological control -- South Africa , Aquatic weeds -- Biological control -- South Africa , Water hyacinth -- Biological control -- South Africa , Biological pest control agents
- Language: English
- Type: text , Thesis , Masters , MSc
- Identifier: http://hdl.handle.net/10962/68133 , vital:29202
- Description: Water hyacinth, Eichhornia crassipes (Martius) Solms-Laubach (Pontederiaceae), is one of the world’s worst alien invasive plants. It is indigenous to the Amazon basin in South America but has become a problematic alien invasive in other parts of the world. As such, several host-specific biological control agents have been sourced from the native distributions in South America and have been released to control this plant where it has become problematic. Two of these agents include the geographically and reproductively isolated cryptic species of Eccritotarsus (Hemiptera: Miridae). One of these species was collected in the upper reaches of the Amazon River in Peru, while the other was collected over 3500km away from that site, in Florianopolis, southern Brazil. These cryptic species were thought to be a single species until recently, when DNA barcoding indicated that they were likely to be two species, and the species status has now been confirmed by interbreeding experiments and detailed morphological studies. The Brazilian population remains Eccritotarsus catarinensis (Carvalho), while the Peruvian population is now known as Eccritotarsus eichhorniae (Henry). The aim of this project was to investigate the mating behaviour and other behavioural traits of the two species that have resulted in reproductive isolation, and which could have led to speciation. In addition, investigations involving analysis of chemical compound compositions of the two species aimed to determine the extent to which the compounds played a role in the development and maintenance of reproductive isolation. To achieve the aims, behavioural-observation experiments were conducted in the form of no-choice, bi-choice and multi-choice tests in 1:1, 2:1 and 3:1 sex ratio assessments, both within and between species. Chemical compound compositions of E. catarinensis and E. eichhorniae were also assessed using Nuclear Magnetic Resonance (NMR), Solid-phase micro-extraction (SPME) and Gas-Chromatography Mass-Spectrometry (GC-MS) techniques. In no-choice experiments, the highest number of single and multiple copula incidences, and average total copula duration was found within species while copulation between species was much rarer. In bi-choice experiments, E. eichhorniae females and E. catarinensis males only chose to mate with their respective conspecifics, and within species copulations continued to have higher average total copula duration. In multi-choice experiments, the highest number of single and multiple copula incidences and average total copula duration was also found within species. GC-MS analysis suggested that E. catarinensis females and E. eichhorniae males have unique chemical compounds missing in their conspecifics and same sex of the other species. Further analysis suggested that E. catarinensis females and E. eichhorniae males have similar chemical compound compositions, whereas as E. eichhorniae females and E. catarinensis males have similar chemical compound compositions. These results suggest that there are behavioural differences that led to the development and maintenance of prezygotic reproductive isolation mechanisms, and that this is probably driven by pheromones in chemical compound compositions. These two species were geographically isolated in the native range and the populations have diverged to the point that they are now reproductively incompatible and therefore, distinct species. The main driver of the speciation is most likely mate recognition and attraction, as only reproductively important traits such as pheromones, genitalia, the scent glands and antennae have changed, while other traits, including host range and morphology, have remained remarkably stable. This provides evidence that differences in sexual selection in isolated populations may be important drivers of speciation and reproductive isolation in cryptic species.
- Full Text:
The invasion ecology of Nymphaea mexicana Zucc. (Mexican Water lily) in South Africa
- Authors: Naidu, Prinavin
- Date: 2019
- Subjects: Nymphaea Mexicana zuccarini , Nymphaea , Nymphaea -- Biological control -- South Africa , Water lilies , Nymphaea -- Ecology -- South Africa , Water lilies -- Biological control -- South Africa , Invasive plants -- Biological control -- South Africa , Aquatic weeds -- Biological control -- South Africa , Water lilies -- Ecology -- South Africa
- Language: English
- Type: text , Thesis , Masters , MSc
- Identifier: http://hdl.handle.net/10962/92920 , vital:30763
- Description: The Mexican water lily, Nymphaea mexicana Zuccarini, is an aquatic perennial, native to southern USA and Mexico, and has been introduced to South Africa via the ornamental plant trade. This species has rapid growth rates and becomes weedy in dams, ponds and rivers. It is currently listed as a NEM:BA category 1b invasive plant in South Africa. One possible management measure for this weed is biological control, but it is a novel target because no biological control programme has been initiated against it anywhere in the world. This study is intended as a baseline for the biological control programme against this plant in South Africa. Assessing the population structure and mode of reproduction of invasive alien plants is an imperative aid to determining if biological control is a suitable management option. Using amplified fragment length polymorphism (AFLP) molecular markers, I compared the amount of genetic variability and differentiation of N. mexicana in its native range (USA), and invasive range (South Africa). Results indicated a large genetic distance between populations in the USA and South Africa, compared to populations within each country. The genetic variability of the invasive populations was higher than that found in the native distribution. This could be due to hybridization in the introduced range, and/or multiple introductions from different source populations. Differences in the morphology of N. mexicana plants in the invasive range and South Africa were also observed which confirm the results of the genetic analyses. I also assessed the reproductive mode of N. mexicana cultivars/hybrids by conducting breeding system experiments and field pollinator studies. Results indicated that the cultivars are sterile, suggesting that the primary mode of reproduction is asexual via fragmentation of tubers. The main pollinators that were found to be associated with the cultivars in South Africa were honeybees, sweat bees, flies and beetles. These insect groups were the same as those that were observed in another study which was conducted on the pollinators associated with the pure N. mexicana in the native range in southern USA. Mechanical and chemical control of N. mexicana and its multiple genotypes have been applied but have not been efficient due to the fast regeneration of shoots, especially in summer. Therefore, these two management options are not long–term solutions and will also be costly due to the widespread occurrence of the hybrids in South Africa. Thus the only cost–effective, environmentally friendly, self–sustainable and long–term management option is biological control. The significant divergence between native and invasive populations of N. mexicana, as well as the possibility of numerous invasive cultivars, may limit future prospects of biological control of this species. However the differences in the root structures between native South African waterlilies, such as N. lotus and N. nouchali, and the introduced waterlilies, such as N. mexicana and its associated hybrids, may play a pivotal role in the success of biological control of the N. mexicana hybrid complex in South Africa. Natural enemies which feed on the hard tuberous roots of N. mexicana and its hybrids, as opposed to the soft bulbs of the native N. nouchali and N. lotus, should be prioritised.
- Full Text:
- Authors: Naidu, Prinavin
- Date: 2019
- Subjects: Nymphaea Mexicana zuccarini , Nymphaea , Nymphaea -- Biological control -- South Africa , Water lilies , Nymphaea -- Ecology -- South Africa , Water lilies -- Biological control -- South Africa , Invasive plants -- Biological control -- South Africa , Aquatic weeds -- Biological control -- South Africa , Water lilies -- Ecology -- South Africa
- Language: English
- Type: text , Thesis , Masters , MSc
- Identifier: http://hdl.handle.net/10962/92920 , vital:30763
- Description: The Mexican water lily, Nymphaea mexicana Zuccarini, is an aquatic perennial, native to southern USA and Mexico, and has been introduced to South Africa via the ornamental plant trade. This species has rapid growth rates and becomes weedy in dams, ponds and rivers. It is currently listed as a NEM:BA category 1b invasive plant in South Africa. One possible management measure for this weed is biological control, but it is a novel target because no biological control programme has been initiated against it anywhere in the world. This study is intended as a baseline for the biological control programme against this plant in South Africa. Assessing the population structure and mode of reproduction of invasive alien plants is an imperative aid to determining if biological control is a suitable management option. Using amplified fragment length polymorphism (AFLP) molecular markers, I compared the amount of genetic variability and differentiation of N. mexicana in its native range (USA), and invasive range (South Africa). Results indicated a large genetic distance between populations in the USA and South Africa, compared to populations within each country. The genetic variability of the invasive populations was higher than that found in the native distribution. This could be due to hybridization in the introduced range, and/or multiple introductions from different source populations. Differences in the morphology of N. mexicana plants in the invasive range and South Africa were also observed which confirm the results of the genetic analyses. I also assessed the reproductive mode of N. mexicana cultivars/hybrids by conducting breeding system experiments and field pollinator studies. Results indicated that the cultivars are sterile, suggesting that the primary mode of reproduction is asexual via fragmentation of tubers. The main pollinators that were found to be associated with the cultivars in South Africa were honeybees, sweat bees, flies and beetles. These insect groups were the same as those that were observed in another study which was conducted on the pollinators associated with the pure N. mexicana in the native range in southern USA. Mechanical and chemical control of N. mexicana and its multiple genotypes have been applied but have not been efficient due to the fast regeneration of shoots, especially in summer. Therefore, these two management options are not long–term solutions and will also be costly due to the widespread occurrence of the hybrids in South Africa. Thus the only cost–effective, environmentally friendly, self–sustainable and long–term management option is biological control. The significant divergence between native and invasive populations of N. mexicana, as well as the possibility of numerous invasive cultivars, may limit future prospects of biological control of this species. However the differences in the root structures between native South African waterlilies, such as N. lotus and N. nouchali, and the introduced waterlilies, such as N. mexicana and its associated hybrids, may play a pivotal role in the success of biological control of the N. mexicana hybrid complex in South Africa. Natural enemies which feed on the hard tuberous roots of N. mexicana and its hybrids, as opposed to the soft bulbs of the native N. nouchali and N. lotus, should be prioritised.
- Full Text:
Investigating thermal physiology as a tool to improve the release efficacy of insect biological control agents
- Authors: Griffith, Tamzin Camilla
- Date: 2018
- Subjects: Aquatic weeds -- Biological control , Water hyacinth -- Biological control , Insects -- Physiology , Miridae -- Effect of low temperatures on , Cold adaptation , Insects as biological pest control agents , Eccritotarsus catarinensis
- Language: English
- Type: text , Thesis , Masters , MSc
- Identifier: http://hdl.handle.net/10962/63301 , vital:28391
- Description: Biological control is commonly used for the control of invasive aquatic weeds, which often involves the release of multiple host-specific agents. Releasing multiple agents has inherent safety concerns as the introduction of each new agent is associated with risks, but is often required to improve control where establishment is limited. Climatic incompatibility between the agent’s thermal physiology and its introduced range often causes agents to fail to establish. However, it has been suggested that the thermal physiology of insects is plastic. Therefore, the potential to manipulate their thermal physiologies before releasing them into the field needs to be explored; reducing the need to release additional agents, thereby ensuring the safety of biological control. This thesis therefore aimed to firstly, determine whether season and locality influenced the thermal physiology of two field populations of a water hyacinth (Eichhornia crassipes) control agent, the mirid Eccritotarsus catarinensis; one collected from the hottest establishment site, and one collected from the coldest establishment site in South Africa. Their thermal physiology was significantly influenced by season and not by the sites’ climate, suggesting their thermal physiology is plastic under field conditions. Secondly, the classical method of determining the lower critical thermal limit (CTmin), and a new respirometry method of determining this limit, compared the thermal physiology of two Eccritotarsus species reared in quarantine. Eccritotarsus catarinensis was significantly more cold tolerant than the more recently released Eccritotarsus eichhorniae, despite similar maintenance conditions, and as such, was used to establish whether cold hardening under laboratory conditions was possible. Successfully cold hardened E. catarinensis had a significantly lower CTmin compared to the field cold acclimated population, suggesting that cold hardening of agents could be conducted before release to improve their cold tolerance and increase their chances of establishment, allowing for further adaptation to colder climates in the field to occur. Increasing establishment of the most effective agents will decrease the number of agents needed in a biological control programme, thus encouraging a more parsimonious approach to biological control.
- Full Text:
- Authors: Griffith, Tamzin Camilla
- Date: 2018
- Subjects: Aquatic weeds -- Biological control , Water hyacinth -- Biological control , Insects -- Physiology , Miridae -- Effect of low temperatures on , Cold adaptation , Insects as biological pest control agents , Eccritotarsus catarinensis
- Language: English
- Type: text , Thesis , Masters , MSc
- Identifier: http://hdl.handle.net/10962/63301 , vital:28391
- Description: Biological control is commonly used for the control of invasive aquatic weeds, which often involves the release of multiple host-specific agents. Releasing multiple agents has inherent safety concerns as the introduction of each new agent is associated with risks, but is often required to improve control where establishment is limited. Climatic incompatibility between the agent’s thermal physiology and its introduced range often causes agents to fail to establish. However, it has been suggested that the thermal physiology of insects is plastic. Therefore, the potential to manipulate their thermal physiologies before releasing them into the field needs to be explored; reducing the need to release additional agents, thereby ensuring the safety of biological control. This thesis therefore aimed to firstly, determine whether season and locality influenced the thermal physiology of two field populations of a water hyacinth (Eichhornia crassipes) control agent, the mirid Eccritotarsus catarinensis; one collected from the hottest establishment site, and one collected from the coldest establishment site in South Africa. Their thermal physiology was significantly influenced by season and not by the sites’ climate, suggesting their thermal physiology is plastic under field conditions. Secondly, the classical method of determining the lower critical thermal limit (CTmin), and a new respirometry method of determining this limit, compared the thermal physiology of two Eccritotarsus species reared in quarantine. Eccritotarsus catarinensis was significantly more cold tolerant than the more recently released Eccritotarsus eichhorniae, despite similar maintenance conditions, and as such, was used to establish whether cold hardening under laboratory conditions was possible. Successfully cold hardened E. catarinensis had a significantly lower CTmin compared to the field cold acclimated population, suggesting that cold hardening of agents could be conducted before release to improve their cold tolerance and increase their chances of establishment, allowing for further adaptation to colder climates in the field to occur. Increasing establishment of the most effective agents will decrease the number of agents needed in a biological control programme, thus encouraging a more parsimonious approach to biological control.
- Full Text:
- «
- ‹
- 1
- ›
- »