Origin and metallogenic significance of alkali metasomatism in the Paleoproterozoic Mapedi Formation, Kalahari Manganese Field, South Africa
- Authors: Ikwen, Emmanuella Biye
- Date: 2023-10-13
- Subjects: Metasomatism (Mineralogy) South Africa , Banded iron formations , Kalahari manganese field , Sugilite , Hydrothermal alteration , Quartzite
- Language: English
- Type: Academic theses , Master's theses , text
- Identifier: http://hdl.handle.net/10962/424632 , vital:72170
- Description: The occurrence of alkali-rich metasomatic assemblages has been widely reported in various regions of the Kalahari Manganese Field (KMF). This alkali metasomatism has been characterized by the secondary introduction of elements such as K, Na, Li, Ba, P, V, Zn, As, amongst others. This study further explores the possibility of widespread alkali metasomatism in the KMF by reporting on and examining the occurrence of sugilite and other alkali-rich minerals at the contact between the Transvaal and Olifantshoek Supergroups in the Hotazel Mine area of the north-eastern KMF. The lithologies observed at the contact show macroscopic (such as cross cutting veins) and microscopic evidence of hydrothermal alteration. Using analytical methods such as X-ray diffraction, X-ray fluorescence, and scanning electron microscopy, results showed that in the north-eastern region of the KMF, the metasomatism observed at the Transvaal-Olifantshoek contact is mainly characterized by enrichment in sodium, and the occurrence of sodium minerals, predominantly in the form of aegirine. The aegirine forms exclusively in the quartzites of the Mapedi Formation along with minerals such as sugilite, baryte, banalsite, amongst others. Albite also occurs within the quartzites, but also within the Mapedi red shales. The secondary nature of these minerals is established by geochemical comparisons with pristine, as well as alkali-metasomatized samples of the same formation which were obtained from other parts of the KMF and Postmasburg. These comparisons showed that the Mapedi quartzites in the north-eastern KMF have undergone extensive oxidation compared to samples of the same formation which were obtained from Postmasburg. The north-eastern quartzites have an average hematite abundance of 17 wt.% compared to Postmasburg quartzite which have an average of 7 wt.% hematite. Furthermore, some quartzite samples contained up to 40 wt.% in hematite content. The comparisons also showed that Mapedi quartzites from the north-eastern KMF are substantially more sodium enriched compared to Mapedi quartzites from the Postmasburg region, which on average have sodium oxide content below detection limits. Geochemical comparisons were made between pristine Hotazel Formation samples from north-western KMF (Gloria Mine) and samples obtained from the north-eastern KMF (Hotazel Mine). Results showed that the samples obtained from the top of the Hotazel Formation (in the Hotazel mine area) are likely altered hematite lutite and not Banded Iron Formation, evident by their substantially high manganese oxide content (over 30 wt.% in some cases). When compared to pristine samples, the lutite also showed evidence of hydrothermal alteration, predominantly in the form of phosphate and barium enrichment, evident by the occurrence of baryte and apatite. The alkali metasomatism occurring at the contact between the Transvaal and Olifantshoek Supergroups was shown to be predominantly characterized by enrichment in Na, K, Li, Al, Ba, Sr, and P. The metasomatism characterized in this study was also proposed to possibly post-date an earlier metasomatic event which was characterized by leaching of silica and extensive oxidation of the rocks observed at the Transvaal-Olifantshoek contact in the north-eastern KMF. The occurrence of the alkali-rich minerals outlined above geochemically parallels other alkali-rich metasomatic assemblages reported in other parts of the KMF, as well as in the Postmasburg Manganese Field. Thus, based on the consistent occurrence of secondary, alkali-rich mineral assemblages across the KMF, characterized by the common occurrence of aegirine along with minerals such as sugilite and albite, there is evidence of a large-scale alkali metasomatism in the KMF. This study also explores the possible role that the Transvaal-Olifantshoek unconformity might have played in acting as a major conduit for fluid propagation because the observed mineral assemblages occur right at the contact between the Hotazel and Mapedi Formations. The occurrence of the alkali-rich minerals predominantly around the unconformity, as well as the relative depletion of phosphates in stratigraphically deeper parts of the Hotazel suggest that the fluid metasomatism was aided by the Olifantshoek-Transvaal unconformity surface. This study concludes that there is evidence for a strong link between the metasomatism occurring at the contact between the Hotazel and Mapedi formations (in the north-eastern KMF) and what is observed in the broader KMF region. , Thesis (MSc) -- Faculty of Science, Geology, 2023
- Full Text:
- Date Issued: 2023-10-13
- Authors: Ikwen, Emmanuella Biye
- Date: 2023-10-13
- Subjects: Metasomatism (Mineralogy) South Africa , Banded iron formations , Kalahari manganese field , Sugilite , Hydrothermal alteration , Quartzite
- Language: English
- Type: Academic theses , Master's theses , text
- Identifier: http://hdl.handle.net/10962/424632 , vital:72170
- Description: The occurrence of alkali-rich metasomatic assemblages has been widely reported in various regions of the Kalahari Manganese Field (KMF). This alkali metasomatism has been characterized by the secondary introduction of elements such as K, Na, Li, Ba, P, V, Zn, As, amongst others. This study further explores the possibility of widespread alkali metasomatism in the KMF by reporting on and examining the occurrence of sugilite and other alkali-rich minerals at the contact between the Transvaal and Olifantshoek Supergroups in the Hotazel Mine area of the north-eastern KMF. The lithologies observed at the contact show macroscopic (such as cross cutting veins) and microscopic evidence of hydrothermal alteration. Using analytical methods such as X-ray diffraction, X-ray fluorescence, and scanning electron microscopy, results showed that in the north-eastern region of the KMF, the metasomatism observed at the Transvaal-Olifantshoek contact is mainly characterized by enrichment in sodium, and the occurrence of sodium minerals, predominantly in the form of aegirine. The aegirine forms exclusively in the quartzites of the Mapedi Formation along with minerals such as sugilite, baryte, banalsite, amongst others. Albite also occurs within the quartzites, but also within the Mapedi red shales. The secondary nature of these minerals is established by geochemical comparisons with pristine, as well as alkali-metasomatized samples of the same formation which were obtained from other parts of the KMF and Postmasburg. These comparisons showed that the Mapedi quartzites in the north-eastern KMF have undergone extensive oxidation compared to samples of the same formation which were obtained from Postmasburg. The north-eastern quartzites have an average hematite abundance of 17 wt.% compared to Postmasburg quartzite which have an average of 7 wt.% hematite. Furthermore, some quartzite samples contained up to 40 wt.% in hematite content. The comparisons also showed that Mapedi quartzites from the north-eastern KMF are substantially more sodium enriched compared to Mapedi quartzites from the Postmasburg region, which on average have sodium oxide content below detection limits. Geochemical comparisons were made between pristine Hotazel Formation samples from north-western KMF (Gloria Mine) and samples obtained from the north-eastern KMF (Hotazel Mine). Results showed that the samples obtained from the top of the Hotazel Formation (in the Hotazel mine area) are likely altered hematite lutite and not Banded Iron Formation, evident by their substantially high manganese oxide content (over 30 wt.% in some cases). When compared to pristine samples, the lutite also showed evidence of hydrothermal alteration, predominantly in the form of phosphate and barium enrichment, evident by the occurrence of baryte and apatite. The alkali metasomatism occurring at the contact between the Transvaal and Olifantshoek Supergroups was shown to be predominantly characterized by enrichment in Na, K, Li, Al, Ba, Sr, and P. The metasomatism characterized in this study was also proposed to possibly post-date an earlier metasomatic event which was characterized by leaching of silica and extensive oxidation of the rocks observed at the Transvaal-Olifantshoek contact in the north-eastern KMF. The occurrence of the alkali-rich minerals outlined above geochemically parallels other alkali-rich metasomatic assemblages reported in other parts of the KMF, as well as in the Postmasburg Manganese Field. Thus, based on the consistent occurrence of secondary, alkali-rich mineral assemblages across the KMF, characterized by the common occurrence of aegirine along with minerals such as sugilite and albite, there is evidence of a large-scale alkali metasomatism in the KMF. This study also explores the possible role that the Transvaal-Olifantshoek unconformity might have played in acting as a major conduit for fluid propagation because the observed mineral assemblages occur right at the contact between the Hotazel and Mapedi Formations. The occurrence of the alkali-rich minerals predominantly around the unconformity, as well as the relative depletion of phosphates in stratigraphically deeper parts of the Hotazel suggest that the fluid metasomatism was aided by the Olifantshoek-Transvaal unconformity surface. This study concludes that there is evidence for a strong link between the metasomatism occurring at the contact between the Hotazel and Mapedi formations (in the north-eastern KMF) and what is observed in the broader KMF region. , Thesis (MSc) -- Faculty of Science, Geology, 2023
- Full Text:
- Date Issued: 2023-10-13
Constraints on Cr-PGE Mineralisation Models: Geochemical and petrological studies in the Middle Group 1 and 3 Chromitites, Western Limb, Bushveld Complex, South Africa
- Authors: Arunachellan, Yogendran
- Date: 2022-10-14
- Subjects: Chromite South Africa Bushveld Complex , Mineralogy South Africa Bushveld Complex , Geochemical surveys South Africa Bushveld Complex
- Language: English
- Type: Academic theses , Master's theses , text
- Identifier: http://hdl.handle.net/10962/362730 , vital:65357
- Description: The Bushveld Complex in South Africa has been of interest in various research groups for decades, along with diverse theories regarding its origin, formation, and emplacement. These theories include magma mixing, contamination, and changes in the chamber's ephemeral parameters. Of interest for our current study is the formation of the middle group chromitite layers in the Western Limb. In this research, we aimed to determine the emplacement mechanism of the MG group chromitites by scrutinising the MG 1 and MG 3 layers. In core KD 151, the focus was placed on the MG 3 and MG 1 chromitite layers and their associated silicate rocks; on these regions of the core, time was spent for detailed observations. The differences and similarities of these layers were explored as the study advanced. The objectives were to determine the in-situ or proximal crystallisation of the chromitite by evaluating mineral textures and compositions. This required that we determine the characteristics of the immediate HW (hanging wall) and FW (footwall) to these chromitites, with insights into the relationship that anorthositic zones may offer and examine the PGE profiles of the chromitites in contrasting lithological settings. The sampled borehole was in the Western Limb of the Bushveld Complex; the immediate HW, chromitite layers and FW were divided into sections (2.5 x 5 cm) along selected horizons for a microscale study. The preliminary results of a study on the sub-economic Middle Group (MG) layers within the Critical Zone (CZ), contrasting the MG 1 (Lower CZ) and MG 3 (Upper CZ) chromitite layers of the Rustenburg Layered Suite of the Bushveld Complex, South Africa were analysed. The MG 3 and 1 suites of silicate rocks show disequilibrium textures between the pyroxenes and plagioclase, forming discontinuous olivine rims. These reaction rims are interpreted as products of magmatic aqueous fluid-facilitated reactions with minerals in a sub-solidus state. Deformation of the plagioclase was also noted in MG 1; this fracturing indicates either the transportation of these minerals or compaction by an overlying crystal mush. The MG 3 package of plagioclase, pyroxene and chromite compositions range from An67-78, En71-86 and Cr# of 68-84, respectively. The MG 1 package of plagioclase, pyroxene and chromite compositions are An64-91, En79-88 and Cr# of 70-80, respectively. The Cu/Pd ratio decreases from the base of the FW as it approaches the base of the chromitite, then remains low within the chromitite layer and finally increases upwards in the HW. These trends are observed in both the MG 3 and 1 package, therefore not influenced by the sulphide control. There is a decrease in both IPGE and PPGE upwards as the HW progresses into the chromitite. The FW levels of Ir and Ru increase upwards immediately adjacent to the FW contact, while Pd and Rh concentrations decrease. The whole-rock Mg# indicates a decrease in the MG 3 with a uniform increase in the HW and an erratic upward increase observed in the FW. The chondrite normalised PGE plots show a bell-shaped curve which is evident for the En content of the pyroxenes and the content of plagioclase with the highest values in the chromitite layer itself. The Cr# of the chromite decreases upwards with the highest values along the FW. The Cu/Pd ratio for MG 1 indicates chromitite control rather than sulphide control of the PGE. The whole-rock Mg# decreases in MG 1 with higher uniform values observed in the HW and FW. The geochemical and petrological data from the MG group study revealed that in situ fractional crystallisation seems unlikely as the sole mechanism for their formation in the CZ. A model is suggested in which the migration and transport of a magmatic slurry type suspension with accompanying hydrous fluids would likely have resulted in the emplacement of these chromitite packages along with the PGE mineralisation of the chromitites. , Thesis (MSc) -- Faculty of Science, Geology, 2022
- Full Text:
- Date Issued: 2022-10-14
- Authors: Arunachellan, Yogendran
- Date: 2022-10-14
- Subjects: Chromite South Africa Bushveld Complex , Mineralogy South Africa Bushveld Complex , Geochemical surveys South Africa Bushveld Complex
- Language: English
- Type: Academic theses , Master's theses , text
- Identifier: http://hdl.handle.net/10962/362730 , vital:65357
- Description: The Bushveld Complex in South Africa has been of interest in various research groups for decades, along with diverse theories regarding its origin, formation, and emplacement. These theories include magma mixing, contamination, and changes in the chamber's ephemeral parameters. Of interest for our current study is the formation of the middle group chromitite layers in the Western Limb. In this research, we aimed to determine the emplacement mechanism of the MG group chromitites by scrutinising the MG 1 and MG 3 layers. In core KD 151, the focus was placed on the MG 3 and MG 1 chromitite layers and their associated silicate rocks; on these regions of the core, time was spent for detailed observations. The differences and similarities of these layers were explored as the study advanced. The objectives were to determine the in-situ or proximal crystallisation of the chromitite by evaluating mineral textures and compositions. This required that we determine the characteristics of the immediate HW (hanging wall) and FW (footwall) to these chromitites, with insights into the relationship that anorthositic zones may offer and examine the PGE profiles of the chromitites in contrasting lithological settings. The sampled borehole was in the Western Limb of the Bushveld Complex; the immediate HW, chromitite layers and FW were divided into sections (2.5 x 5 cm) along selected horizons for a microscale study. The preliminary results of a study on the sub-economic Middle Group (MG) layers within the Critical Zone (CZ), contrasting the MG 1 (Lower CZ) and MG 3 (Upper CZ) chromitite layers of the Rustenburg Layered Suite of the Bushveld Complex, South Africa were analysed. The MG 3 and 1 suites of silicate rocks show disequilibrium textures between the pyroxenes and plagioclase, forming discontinuous olivine rims. These reaction rims are interpreted as products of magmatic aqueous fluid-facilitated reactions with minerals in a sub-solidus state. Deformation of the plagioclase was also noted in MG 1; this fracturing indicates either the transportation of these minerals or compaction by an overlying crystal mush. The MG 3 package of plagioclase, pyroxene and chromite compositions range from An67-78, En71-86 and Cr# of 68-84, respectively. The MG 1 package of plagioclase, pyroxene and chromite compositions are An64-91, En79-88 and Cr# of 70-80, respectively. The Cu/Pd ratio decreases from the base of the FW as it approaches the base of the chromitite, then remains low within the chromitite layer and finally increases upwards in the HW. These trends are observed in both the MG 3 and 1 package, therefore not influenced by the sulphide control. There is a decrease in both IPGE and PPGE upwards as the HW progresses into the chromitite. The FW levels of Ir and Ru increase upwards immediately adjacent to the FW contact, while Pd and Rh concentrations decrease. The whole-rock Mg# indicates a decrease in the MG 3 with a uniform increase in the HW and an erratic upward increase observed in the FW. The chondrite normalised PGE plots show a bell-shaped curve which is evident for the En content of the pyroxenes and the content of plagioclase with the highest values in the chromitite layer itself. The Cr# of the chromite decreases upwards with the highest values along the FW. The Cu/Pd ratio for MG 1 indicates chromitite control rather than sulphide control of the PGE. The whole-rock Mg# decreases in MG 1 with higher uniform values observed in the HW and FW. The geochemical and petrological data from the MG group study revealed that in situ fractional crystallisation seems unlikely as the sole mechanism for their formation in the CZ. A model is suggested in which the migration and transport of a magmatic slurry type suspension with accompanying hydrous fluids would likely have resulted in the emplacement of these chromitite packages along with the PGE mineralisation of the chromitites. , Thesis (MSc) -- Faculty of Science, Geology, 2022
- Full Text:
- Date Issued: 2022-10-14
Trace element and sulphur isotope variations of sulphides in the Koperberg Suite, O’okiep Copper District, Namaqualand, South Africa: implications for formation of sulphides and the role of crustal sulphur assimilation
- Authors: Marima, Edmore
- Date: 2022-04-06
- Subjects: Sulfur Isotopes , Magmatism South Africa Namaqualand , Sulfides , Koperberg Suite (South Africa) , Copper sulfide , Sulfur Absorption and adsorption
- Language: English
- Type: Academic theses , Master's theses , text
- Identifier: http://hdl.handle.net/10962/291117 , vital:56820
- Description: The major economic copper sulphide deposits hosted in the late Mesoproterozoic intrusions of the Koperberg Suite in the O’okiep Copper District immediately overlie sulphur-bearing paragneisses of the Khurisberg Subgroup in an otherwise low-sulphur granitic basement. The dominant sulphide assemblage (chalcopyrite and bornite) hosted in the Koperberg Suite is also atypical of the intermediate solid solution (iss) assemblage (chalcopyrite and pyrrhotite) observed in most Cu-Ni magmatic sulphide deposits. This study presents sulphur isotope and in-situ trace element analysis of sulphides from the Koperberg Suite and the Khurisberg Subgroup with the view of placing constraints on the role of sulphide-bearing supracrustal metasedimentary of the Khurisberg Subgroup as a source of additional sulphur in the genesis of these deposits, and ore-forming (sulphide formation) processes which result in trace element variations registered by sulphides hosted in the Koperberg Suite. The high concentrations (up to 2100 ppm) of monosulphide solid solution (mss)-incompatible trace elements (e.g., Te, Se, Bi, Ag, Pb), and the depletion in Ni and Co (<40 ppm) of sulphides hosted in the Koperberg Suite are instead consistent with the derivation of such sulphides from a Cu-rich sulphide melt which segregated from a Ni-rich sulphide melt prior to magma emplacement in the middle crust, in agreement with one of the petrogenetic models for the Koperberg Suite proposed in the existing literature. The low S/Se ratios ( ̴650-10300) of sulphides hosted in the Koperberg Suite and the high S/Se ratios ( ̴18800-56000) registered by the main sulphide phase (pyrite) in the Khurisberg Subgroup argues against crustal contamination of the Koperberg Suite magmas by the Khurisberg Subgroup. The S/Se and Cu/S ratios of coexisting bornite and chalcopyrite hosted in the Koperberg Suite are positively correlated with the bornite modal abundance in the Koperberg Suite. Such trends are interpreted to be consistent with progressive oxidation of sulphide melt, a process which results in the crystallisation of iss-bornite assemblage and/or replacement of iss with bornite due to the enrichment of Cu and depletion in S of the sulphide melt. The oxidation of sulphide melt is likely to have been effectuated by the fractional crystallisation of mss in a prior sulphide melt segregation event and/or the fractional crystallisation of Fe2+-dominated silicate phases. Fractionation of the Cu-rich melt sulphide melt (segregated from mss) also tends to enrich the residual sulphide melts in Se. Thus, the chalcopyrite-dominated assemblage with S/Se ratios of ̴1300-10200 observed in the less basic rocks in the Koperberg Suite (leucodiorites and leuconorites) is interpreted to have formed from the least evolved sulphide melt, whereas the bornite-dominated assemblage with S/Se ratios of ̴650-5500 observed in the more mafic members of the Koperberg Suite (orthopyroxenites and norites) is interpreted to have formed from the most evolved sulphide melt. The ẟ34S isotopic signatures in sulphides of the Koperberg Suite (-1.4 to +1.91‰) and the proposed contaminant, the Khurisberg Subgroup (-1.2 to +3.5‰), overlap with the those of the Koperberg Suite below the Khurisberg Subgroup (+0.74‰) and typical mantle-derived magmatic rocks (0 ± iv 2‰). Hence, the sulphur isotope variations are inconclusive as an indicator of possible crustal sulphur assimilation into the intruding mantle magma. However, considering the trace element systematics and the sulphur isotope data, the Koperberg magmas likely attained sulphur saturation at deeper crustal levels. , Thesis (MSc) -- Faculty of Science, Geology, 2022
- Full Text:
- Date Issued: 2022-04-06
- Authors: Marima, Edmore
- Date: 2022-04-06
- Subjects: Sulfur Isotopes , Magmatism South Africa Namaqualand , Sulfides , Koperberg Suite (South Africa) , Copper sulfide , Sulfur Absorption and adsorption
- Language: English
- Type: Academic theses , Master's theses , text
- Identifier: http://hdl.handle.net/10962/291117 , vital:56820
- Description: The major economic copper sulphide deposits hosted in the late Mesoproterozoic intrusions of the Koperberg Suite in the O’okiep Copper District immediately overlie sulphur-bearing paragneisses of the Khurisberg Subgroup in an otherwise low-sulphur granitic basement. The dominant sulphide assemblage (chalcopyrite and bornite) hosted in the Koperberg Suite is also atypical of the intermediate solid solution (iss) assemblage (chalcopyrite and pyrrhotite) observed in most Cu-Ni magmatic sulphide deposits. This study presents sulphur isotope and in-situ trace element analysis of sulphides from the Koperberg Suite and the Khurisberg Subgroup with the view of placing constraints on the role of sulphide-bearing supracrustal metasedimentary of the Khurisberg Subgroup as a source of additional sulphur in the genesis of these deposits, and ore-forming (sulphide formation) processes which result in trace element variations registered by sulphides hosted in the Koperberg Suite. The high concentrations (up to 2100 ppm) of monosulphide solid solution (mss)-incompatible trace elements (e.g., Te, Se, Bi, Ag, Pb), and the depletion in Ni and Co (<40 ppm) of sulphides hosted in the Koperberg Suite are instead consistent with the derivation of such sulphides from a Cu-rich sulphide melt which segregated from a Ni-rich sulphide melt prior to magma emplacement in the middle crust, in agreement with one of the petrogenetic models for the Koperberg Suite proposed in the existing literature. The low S/Se ratios ( ̴650-10300) of sulphides hosted in the Koperberg Suite and the high S/Se ratios ( ̴18800-56000) registered by the main sulphide phase (pyrite) in the Khurisberg Subgroup argues against crustal contamination of the Koperberg Suite magmas by the Khurisberg Subgroup. The S/Se and Cu/S ratios of coexisting bornite and chalcopyrite hosted in the Koperberg Suite are positively correlated with the bornite modal abundance in the Koperberg Suite. Such trends are interpreted to be consistent with progressive oxidation of sulphide melt, a process which results in the crystallisation of iss-bornite assemblage and/or replacement of iss with bornite due to the enrichment of Cu and depletion in S of the sulphide melt. The oxidation of sulphide melt is likely to have been effectuated by the fractional crystallisation of mss in a prior sulphide melt segregation event and/or the fractional crystallisation of Fe2+-dominated silicate phases. Fractionation of the Cu-rich melt sulphide melt (segregated from mss) also tends to enrich the residual sulphide melts in Se. Thus, the chalcopyrite-dominated assemblage with S/Se ratios of ̴1300-10200 observed in the less basic rocks in the Koperberg Suite (leucodiorites and leuconorites) is interpreted to have formed from the least evolved sulphide melt, whereas the bornite-dominated assemblage with S/Se ratios of ̴650-5500 observed in the more mafic members of the Koperberg Suite (orthopyroxenites and norites) is interpreted to have formed from the most evolved sulphide melt. The ẟ34S isotopic signatures in sulphides of the Koperberg Suite (-1.4 to +1.91‰) and the proposed contaminant, the Khurisberg Subgroup (-1.2 to +3.5‰), overlap with the those of the Koperberg Suite below the Khurisberg Subgroup (+0.74‰) and typical mantle-derived magmatic rocks (0 ± iv 2‰). Hence, the sulphur isotope variations are inconclusive as an indicator of possible crustal sulphur assimilation into the intruding mantle magma. However, considering the trace element systematics and the sulphur isotope data, the Koperberg magmas likely attained sulphur saturation at deeper crustal levels. , Thesis (MSc) -- Faculty of Science, Geology, 2022
- Full Text:
- Date Issued: 2022-04-06
Genetic relationships between migmatites and the Swartoup Pluton in the Swartoup Hills (central Namaqua Belt)
- Authors: Schmeldt, Graeme Alvin
- Date: 2021-10-29
- Subjects: Migmatite South Africa Northern Cape , Intrusions (Geology) South Africa , Metamorphic rocks South Africa Northern Cape , Metamorphism (Geology) South Africa Northern Cape , Onseepkans (South Africa) , Namaqualand (South Africa) , Anatexis , Swartoup , Koenap
- Language: English
- Type: Master's theses , text
- Identifier: http://hdl.handle.net/10962/192162 , vital:45201
- Description: The central Namaqua Metamorphic Complex can be characterised by long-standing high-temperature (up to granulite/amphibolite facies) conditions between _ 1300 and 1100Ma, inevitably resulting in widespread metamorphism and plutonism. Hosted within a NW–SE striking antiformal structure about 40 km east of Onseepkans, Northen Cape, South Africa, in the Swartoup Hills, lies the Swartoup Pluton. The Swartoup Pluton was sampled and described in hand specimen and thin section. The study area was photographed, with all data presented in this study. The various rock types are readily discerned in the field due to their characteristic weathering colours and overall fabrics. The Swartoup granodioritic body is hosted within metasediments of the Bysteek and Koenap Formations, of the Arribees Group. The package was later intruded by another later granitoid, the Polisiehoek Granite-gneiss. The Bysteek Formation, a wall rock to the S-type Swartoup Pluton, reacted at the contact with the igneous body resulting in localised feldspathic granites and granodiorites with prominent, often euhedral, garnet, pryoxene and titanite. The Swartoup Pluton is divided into two subgroups. The first is characterised by higher P2O5 contents, _ 0.3 – 0.4 wt.%, shown with a narrower constraint on its Rb contents, _ 80 – 160 ppm, than the second, with _ 0.14 – 0.4 wt.% P2O5 and 20 – 310 ppm Rb. Meanwhile the Polisiehoek Granite-gneiss shows _ 50 – 420 ppm Rb and _ 0.04 – 0:1 wt% P2O5. As a whole, the Swartoup Pluton is characterised by somewhat elevated CaO concentrations (_ 1.5 – 6.0 wt.%), relative to calculated averages of granites (1.8 wt.% CaO, Le Maitre, 1976) and granodiorites (3.9 wt.% CaO, Le Maitre, 1976). Whilst most of the Swartoup specimens were classified as granodiorites, some orthopyroxene-bearing monzodiorite and orthopyroxenebearing monzonite were locally found and sampled. However, much of the body appears to be granodioritic to granitic in composition. The Polisiehoek Granite-gneiss is characterised by its orange-brown weathering colour in the field, sheared texture, lower P2O5 and higher total alkali content than the Swartoup Pluton. The Polisiehoek Granite-gneiss is a highly fractionated S-type granite, as shown by plots of (a) (Na2O + K2O)/CaO and (b) FeOT/MgO versus Zr + Nb + Ce + Y (Whalen et al., 1987; Zhang et al., 2019) and also of (c) (Al2O3 + CaO)/(FeOT + Na2O + K2O) versus 100 × (MgO + FeOT + TiO2)/SiO2 (after Sylvester, 1989). Classification schemes identify the Polisiehoek Granite-gneiss as either a granite (TAS diagram, after Middlemost, 1994) or alkali granite (R1R2 diagram, after De la Roche et al., 1980). , Thesis (MSc) -- Faculty of Science, Geology, 2021
- Full Text:
- Date Issued: 2021-10-29
- Authors: Schmeldt, Graeme Alvin
- Date: 2021-10-29
- Subjects: Migmatite South Africa Northern Cape , Intrusions (Geology) South Africa , Metamorphic rocks South Africa Northern Cape , Metamorphism (Geology) South Africa Northern Cape , Onseepkans (South Africa) , Namaqualand (South Africa) , Anatexis , Swartoup , Koenap
- Language: English
- Type: Master's theses , text
- Identifier: http://hdl.handle.net/10962/192162 , vital:45201
- Description: The central Namaqua Metamorphic Complex can be characterised by long-standing high-temperature (up to granulite/amphibolite facies) conditions between _ 1300 and 1100Ma, inevitably resulting in widespread metamorphism and plutonism. Hosted within a NW–SE striking antiformal structure about 40 km east of Onseepkans, Northen Cape, South Africa, in the Swartoup Hills, lies the Swartoup Pluton. The Swartoup Pluton was sampled and described in hand specimen and thin section. The study area was photographed, with all data presented in this study. The various rock types are readily discerned in the field due to their characteristic weathering colours and overall fabrics. The Swartoup granodioritic body is hosted within metasediments of the Bysteek and Koenap Formations, of the Arribees Group. The package was later intruded by another later granitoid, the Polisiehoek Granite-gneiss. The Bysteek Formation, a wall rock to the S-type Swartoup Pluton, reacted at the contact with the igneous body resulting in localised feldspathic granites and granodiorites with prominent, often euhedral, garnet, pryoxene and titanite. The Swartoup Pluton is divided into two subgroups. The first is characterised by higher P2O5 contents, _ 0.3 – 0.4 wt.%, shown with a narrower constraint on its Rb contents, _ 80 – 160 ppm, than the second, with _ 0.14 – 0.4 wt.% P2O5 and 20 – 310 ppm Rb. Meanwhile the Polisiehoek Granite-gneiss shows _ 50 – 420 ppm Rb and _ 0.04 – 0:1 wt% P2O5. As a whole, the Swartoup Pluton is characterised by somewhat elevated CaO concentrations (_ 1.5 – 6.0 wt.%), relative to calculated averages of granites (1.8 wt.% CaO, Le Maitre, 1976) and granodiorites (3.9 wt.% CaO, Le Maitre, 1976). Whilst most of the Swartoup specimens were classified as granodiorites, some orthopyroxene-bearing monzodiorite and orthopyroxenebearing monzonite were locally found and sampled. However, much of the body appears to be granodioritic to granitic in composition. The Polisiehoek Granite-gneiss is characterised by its orange-brown weathering colour in the field, sheared texture, lower P2O5 and higher total alkali content than the Swartoup Pluton. The Polisiehoek Granite-gneiss is a highly fractionated S-type granite, as shown by plots of (a) (Na2O + K2O)/CaO and (b) FeOT/MgO versus Zr + Nb + Ce + Y (Whalen et al., 1987; Zhang et al., 2019) and also of (c) (Al2O3 + CaO)/(FeOT + Na2O + K2O) versus 100 × (MgO + FeOT + TiO2)/SiO2 (after Sylvester, 1989). Classification schemes identify the Polisiehoek Granite-gneiss as either a granite (TAS diagram, after Middlemost, 1994) or alkali granite (R1R2 diagram, after De la Roche et al., 1980). , Thesis (MSc) -- Faculty of Science, Geology, 2021
- Full Text:
- Date Issued: 2021-10-29
Petrographic and geochemical characterisation of the hangingwall and the footwall rocks (the Dipeta and R.A.T. stratigraphic units) to the Kinsevere and Nambulwa copper ore deposits of the Lufilian Arc, southern Democratic Republic of Congo
- Authors: Nkulu, Robert Kankomba
- Date: 2020
- Subjects: Petrogenesis -- Congo (Democratic Republic) , Analytical geochemistry -- Congo (Democratic Republic) , Copper ores -- Congo (Democratic Republic) , Ore deposits -- Congo (Democratic Republic) , Katangan Sequence , Geological mapping -- Congo (Democratic Republic) , Central African Copperbelt (Congo and Zambia) , Lufilian Arc , Neoproterozoic Katangan R.A.T. (Roches Argilo Talqueuse) Subgroup , Dipeta Subgroup
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: http://hdl.handle.net/10962/142772 , vital:38115
- Description: The Kinsevere and Nambulwa copper deposits in the Democratic Republic of Congo (D.R.C.) are set in the eastern side of the Neoproterozoic Katanga Supergroup, forming the Lufilian Arc, resulting from a cratonic collision between the Congo and the Kalahari Cratons (ca.620-570_Ma). The Katanga Supergroup was deposited in an extensional rift setting with a sedimentary thickness succession ranging between 7 to 10 km, sub-divided into: − the Roan, the Nguba and the Kundelungu Groups. The stratigraphic column of the Roan Group consists of the R.A.T. (Roche Argilo Talqueuse), the Mines, the Dipeta and the Mwashya Subgroups. Three major deformation phases have been described characterised by complex multiphase tectonics related to a curved superposition of folded, thrust and sheared blocks. The rocks of the R.A.T., Mines and Dipeta Subgroups are recognised as blocks that occur within a stratiform to discordant and diapiritic megabreccia. The blocks were rafted upward with salt tectonics, resulting in the juxtaposition with the hangingwall and the footwall terranes. Therefore, in that context it has been found that the Dipeta may appear overlying the R.A.T. Subgroup through the unconformity decollement surface of heterogeneous breccia. The petrographic observations made of the R.A.T. and Dipeta samples indicates in both units the presence of detrital quartz and feldspar that have been altered and replaced by sericite and muscovite minerals. Gypsum is intimately associated with magnesite, showing an evaporitic environment domain, while magnesite is common as alteration phase both in the R.A.T. and Dipeta Subgroups. Pyrophyllite has been observed in the Dipeta, resulting from reaction of silica with the Kaolinite at low temperature. Accessory detrital minerals include zircon, as well as xenotime intergrown with altered Fe-Ti-oxide hematite, forming complex textures with disseminated Ti-oxides both in R.A.T. and Dipeta units. Major and trace element geochemistry indicates that the Dipeta is more dolomitic and magnesite while the R.A.T. is clay-rich. The Ti2O value of Dipeta and R.A.T samples is relatively low, ranging between 0.36 and 0.69 wt.% respectively, which suggest highly evolved felsic material in the protolith. This is consistent with interpretation based on the Al2O3/TiO2 ratio, which ranges between 18 and 23 for the R.A.T. and Dipeta respectively, indicating an intermediate to felsic granitoids as the protolith of R.A.T. and Dipeta siltstones. The Ti/Zr ratio of R.A.T. and Dipeta samples of less than 10, while, the higher La/Sc ratio of between 2.6 and 5.5 (for the R.A.T. and Dipeta respectively) indicate that both the R.A.T. and Dipeta are active continental and passive margin tectonic setting. Based on the geochemical variation with depth across the R.A.T. and Dipeta and their contact zone, a geochemical fingerprinting suggests that the ratio TiO2/Al2O3 appears to be useful and could be considered as a stratigraphic geochemical maker able to discriminate the R.A.T. and the Dipeta Subgroups during the geological mapping.
- Full Text:
- Date Issued: 2020
- Authors: Nkulu, Robert Kankomba
- Date: 2020
- Subjects: Petrogenesis -- Congo (Democratic Republic) , Analytical geochemistry -- Congo (Democratic Republic) , Copper ores -- Congo (Democratic Republic) , Ore deposits -- Congo (Democratic Republic) , Katangan Sequence , Geological mapping -- Congo (Democratic Republic) , Central African Copperbelt (Congo and Zambia) , Lufilian Arc , Neoproterozoic Katangan R.A.T. (Roches Argilo Talqueuse) Subgroup , Dipeta Subgroup
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: http://hdl.handle.net/10962/142772 , vital:38115
- Description: The Kinsevere and Nambulwa copper deposits in the Democratic Republic of Congo (D.R.C.) are set in the eastern side of the Neoproterozoic Katanga Supergroup, forming the Lufilian Arc, resulting from a cratonic collision between the Congo and the Kalahari Cratons (ca.620-570_Ma). The Katanga Supergroup was deposited in an extensional rift setting with a sedimentary thickness succession ranging between 7 to 10 km, sub-divided into: − the Roan, the Nguba and the Kundelungu Groups. The stratigraphic column of the Roan Group consists of the R.A.T. (Roche Argilo Talqueuse), the Mines, the Dipeta and the Mwashya Subgroups. Three major deformation phases have been described characterised by complex multiphase tectonics related to a curved superposition of folded, thrust and sheared blocks. The rocks of the R.A.T., Mines and Dipeta Subgroups are recognised as blocks that occur within a stratiform to discordant and diapiritic megabreccia. The blocks were rafted upward with salt tectonics, resulting in the juxtaposition with the hangingwall and the footwall terranes. Therefore, in that context it has been found that the Dipeta may appear overlying the R.A.T. Subgroup through the unconformity decollement surface of heterogeneous breccia. The petrographic observations made of the R.A.T. and Dipeta samples indicates in both units the presence of detrital quartz and feldspar that have been altered and replaced by sericite and muscovite minerals. Gypsum is intimately associated with magnesite, showing an evaporitic environment domain, while magnesite is common as alteration phase both in the R.A.T. and Dipeta Subgroups. Pyrophyllite has been observed in the Dipeta, resulting from reaction of silica with the Kaolinite at low temperature. Accessory detrital minerals include zircon, as well as xenotime intergrown with altered Fe-Ti-oxide hematite, forming complex textures with disseminated Ti-oxides both in R.A.T. and Dipeta units. Major and trace element geochemistry indicates that the Dipeta is more dolomitic and magnesite while the R.A.T. is clay-rich. The Ti2O value of Dipeta and R.A.T samples is relatively low, ranging between 0.36 and 0.69 wt.% respectively, which suggest highly evolved felsic material in the protolith. This is consistent with interpretation based on the Al2O3/TiO2 ratio, which ranges between 18 and 23 for the R.A.T. and Dipeta respectively, indicating an intermediate to felsic granitoids as the protolith of R.A.T. and Dipeta siltstones. The Ti/Zr ratio of R.A.T. and Dipeta samples of less than 10, while, the higher La/Sc ratio of between 2.6 and 5.5 (for the R.A.T. and Dipeta respectively) indicate that both the R.A.T. and Dipeta are active continental and passive margin tectonic setting. Based on the geochemical variation with depth across the R.A.T. and Dipeta and their contact zone, a geochemical fingerprinting suggests that the ratio TiO2/Al2O3 appears to be useful and could be considered as a stratigraphic geochemical maker able to discriminate the R.A.T. and the Dipeta Subgroups during the geological mapping.
- Full Text:
- Date Issued: 2020
Mineralogical, geochemical and lead isotopic analysis of the lead mineralization of the Skorpion Deposit, south western Namibia
- Authors: Uazeua, Kakunauua
- Date: 2019
- Subjects: Zinc ores -- Namibia , Formations (Geology) -- Namibia , Mineralogy -- Namibia , Lead -- Metallurgy -- Namibia , Lead -- Isotopes -- Namibia
- Language: English
- Type: text , Thesis , Masters , MSc
- Identifier: http://hdl.handle.net/10962/68391 , vital:29250
- Description: The Skorpion none-sulphide Zinc Deposit is located in the para-autochtonous Port Nolloth Zone of the Gariep Belt, which overlays the Lower-Proterozoic Orange River Group basement rocks (Corrans et al., 1993). Situated in close proximity to the larger Rosh Pinah Zn-Pb deposit, the Skorpion Deposit contained a resource of 24.6 Mt at 10.6 % Zn and unquantified Cu and Pb prior to mining. To date, zinc has been the only metal exploited, with minor amounts of copper as a by-product. This study aims at understanding the mineralogical composition of the Skorpion lead mineralization and understanding the relationship between lead and the major metals such as zinc and copper in order to form a basis for further work that could determine the potential of processing lead as a by-product. As part of the study, work was also done on lead isotopes mainly with the aim of understanding the mineralization genesis and to determine the differences between the Skorpion and Rosh Pinah deposit which rationalize the inferior economic potential of the Skorpion lead mineralization. Results of the study have shown that majority of the lead mineralization is hosted by the felsic metavolcanics as galena and subordinately in the metasiliciclastics as pyromorphite, a lead manganese phosphate. In terms of the mineral textures, the lead minerals appear to be mainly secondary phases that have been remobilized and reprecipitated around pyrite, within pyrite cracks and intergrown with minerals such as chalcocite and greenockite. Lead has been mainly concentrated along fault zones. The elevated pyromorphite concentrations tend to occur within gossanous zones in close association with iron and manganese oxides. These textures represent supergene enrichment of a sulphide proto ore. However, contrary to copper and zinc mineralization, lead was not remobilized far from the proto ore merely as a function of its poor mobility in acidic fluids (Reddy et al., 1995). This substantiates the concentration of secondary lead in the felsic metavolcanics and to a much lesser extent, in the metasiliciclastics. Both secondary zinc and copper were reprecipitated in the metasiliciclastics, further away from the sulphide proto ore, hosted mainly by the felsic metavolcanics. The average lead isotope ratios of 206Pb/204Pb (17.26), 207Pb/204Pb (15.60) and 208Pb/204Pb (37.42) resemble results provided by Frimmel (2004) for both the Skorpion and Rosh Pinah deposits. For the Skorpion samples from Frimmel (2004) had the following average ratios: 206Pb/204Pb (17.29), 207Pb/204Pb (15.59) and 208Pb/204Pb (37.51). The Rosh Pinah samples had the following average ratios: 206Pb/204Pb (17.17), 207Pb/204Pb (15.61) and 208Pb/204Pb (37.45). These results indicate lead derivation from the lower 2.0 Ga Eburnean pre-Gariep basement in agreement with and Frimmel et al. (2004). The host felsic metavolcanics might have been derived from melting of the basement rocks during the formation of the Adamastor Ocean. In comparison to the Rosh Pinah deposit lead isotope signatures, the Skorpion lead isotopes overlap with the Rosh Pinah deposit isotopes, but have a much narrower range. This is an indication of a much shorter lived and potentially faster mineralization event contrary to the SEDEX type Rosh Pinah deposit. The smaller tonnage of the Skorpion deposit, its inferior lead concentrations and the elevated radiogenic lead isotopes point toward a VMS deposit which was formed in a small graben fed by shallow conduits during a short lived mineralization event. Sedimentary rocks covered the forming deposit at a fast rate and impaired the deposit advancement. The interaction between the upper crustal rocks and the mineralizing fluids is what may have resulted in the elevated radiogenic lead signature. In contrast to this, SEDEX deposits such as the Rosh Pinah Deposit, are generally fed by deep seated conduits that allow more longer lived leaching of metals from the underlying basement rocks and generally allow minor influence from upper crustal rocks.
- Full Text:
- Date Issued: 2019
- Authors: Uazeua, Kakunauua
- Date: 2019
- Subjects: Zinc ores -- Namibia , Formations (Geology) -- Namibia , Mineralogy -- Namibia , Lead -- Metallurgy -- Namibia , Lead -- Isotopes -- Namibia
- Language: English
- Type: text , Thesis , Masters , MSc
- Identifier: http://hdl.handle.net/10962/68391 , vital:29250
- Description: The Skorpion none-sulphide Zinc Deposit is located in the para-autochtonous Port Nolloth Zone of the Gariep Belt, which overlays the Lower-Proterozoic Orange River Group basement rocks (Corrans et al., 1993). Situated in close proximity to the larger Rosh Pinah Zn-Pb deposit, the Skorpion Deposit contained a resource of 24.6 Mt at 10.6 % Zn and unquantified Cu and Pb prior to mining. To date, zinc has been the only metal exploited, with minor amounts of copper as a by-product. This study aims at understanding the mineralogical composition of the Skorpion lead mineralization and understanding the relationship between lead and the major metals such as zinc and copper in order to form a basis for further work that could determine the potential of processing lead as a by-product. As part of the study, work was also done on lead isotopes mainly with the aim of understanding the mineralization genesis and to determine the differences between the Skorpion and Rosh Pinah deposit which rationalize the inferior economic potential of the Skorpion lead mineralization. Results of the study have shown that majority of the lead mineralization is hosted by the felsic metavolcanics as galena and subordinately in the metasiliciclastics as pyromorphite, a lead manganese phosphate. In terms of the mineral textures, the lead minerals appear to be mainly secondary phases that have been remobilized and reprecipitated around pyrite, within pyrite cracks and intergrown with minerals such as chalcocite and greenockite. Lead has been mainly concentrated along fault zones. The elevated pyromorphite concentrations tend to occur within gossanous zones in close association with iron and manganese oxides. These textures represent supergene enrichment of a sulphide proto ore. However, contrary to copper and zinc mineralization, lead was not remobilized far from the proto ore merely as a function of its poor mobility in acidic fluids (Reddy et al., 1995). This substantiates the concentration of secondary lead in the felsic metavolcanics and to a much lesser extent, in the metasiliciclastics. Both secondary zinc and copper were reprecipitated in the metasiliciclastics, further away from the sulphide proto ore, hosted mainly by the felsic metavolcanics. The average lead isotope ratios of 206Pb/204Pb (17.26), 207Pb/204Pb (15.60) and 208Pb/204Pb (37.42) resemble results provided by Frimmel (2004) for both the Skorpion and Rosh Pinah deposits. For the Skorpion samples from Frimmel (2004) had the following average ratios: 206Pb/204Pb (17.29), 207Pb/204Pb (15.59) and 208Pb/204Pb (37.51). The Rosh Pinah samples had the following average ratios: 206Pb/204Pb (17.17), 207Pb/204Pb (15.61) and 208Pb/204Pb (37.45). These results indicate lead derivation from the lower 2.0 Ga Eburnean pre-Gariep basement in agreement with and Frimmel et al. (2004). The host felsic metavolcanics might have been derived from melting of the basement rocks during the formation of the Adamastor Ocean. In comparison to the Rosh Pinah deposit lead isotope signatures, the Skorpion lead isotopes overlap with the Rosh Pinah deposit isotopes, but have a much narrower range. This is an indication of a much shorter lived and potentially faster mineralization event contrary to the SEDEX type Rosh Pinah deposit. The smaller tonnage of the Skorpion deposit, its inferior lead concentrations and the elevated radiogenic lead isotopes point toward a VMS deposit which was formed in a small graben fed by shallow conduits during a short lived mineralization event. Sedimentary rocks covered the forming deposit at a fast rate and impaired the deposit advancement. The interaction between the upper crustal rocks and the mineralizing fluids is what may have resulted in the elevated radiogenic lead signature. In contrast to this, SEDEX deposits such as the Rosh Pinah Deposit, are generally fed by deep seated conduits that allow more longer lived leaching of metals from the underlying basement rocks and generally allow minor influence from upper crustal rocks.
- Full Text:
- Date Issued: 2019
Evolution of Fe-Ti-V oxides from the main magnetite layer, Upper Zone, Bushveld Complex, South Africa: a comparison across the Western, Northern and Eastern Lobes
- Authors: Iorga-Pavel, Adina
- Date: 2017
- Subjects: Magnetite -- South Africa -- Bushveld Complex , Mineralogy -- South Africa -- Bushveld Complex , Oxides
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: http://hdl.handle.net/10962/7357 , vital:21248
- Description: The Main Magnetite Layer (MML) from the Northern, Eastern and Western lobes of the Bushveld Complex shows significant differences in textures and in mineral chemistry. The MML in the Eastern and Western lobes is massive, with rare, small and altered pyroxene inclusions. By contrast, the MML in the Northern Lobe is more heterogeneous, and it is made of anastomosed and sometimes imbricated, thin layers of magnetitite, magnetite-rich and silicate-rich rocks, where the inclusions in Ti-magnetite are more numerous and consist of mainly altered subhedral and anhedral plagioclase. The comparison of the maximum values of the oxides shows that the MML in the Northern Lobe has the highest content of V2O3 (1.97 wt%), TiO2 (22.49 wt%) and MgO (2.92 wt%), while the MML in the Eastern Lobe has the highest content of Cr2O3 (2.92 wt%) and Al2O3 (9.80 wt%), but lowest V2O3 (0.52 wt%). The lower TiO2 content and higher V2O3 content in the MML of the Northern and Western Lobes suggest lower oxidising conditions during the crystallization of oxides. The MML in all three studied lobes consists of two layers of magnetitite, suggesting that MML was formed by two separate magma influxes, probably on a diverse and complex type of magma chamber floor. The high TiO2 content in magnetite, together with the negative correlation between TiO2 and V2O3 suggest that the maximum V content should represent a “less evolved” and less oxidized melt. In this respect, higher concentrations V2O3 in magnetite can be expected in magnetitite layers with lower TiO2. It can be inferred that the Ti-magetite in the MML from the Eastern Lobe was formed from a more evolved (TiO2 and FeO enriched) and more oxidized (lower V2O3) melt, compared with the MML from the Northern and Western lobes. These findings can be used to illustrate: a) that high fO2 can be responsible for the relatively low V content in magnetite from Fe-Ti oxide ores and b) the vanadium in magnetite decreases significantly in more evolved cumulates, due to a decreasing fO2 with differentiation. Compositional profiles of Ti- magnetite along the stratigraphic height of the MML in the Eastern Lobe (composed of two layers, separated in the outcrop by a parting plane) depicts a cryptic variation with depth in each of the two layers, where each layer can be divided into four sublayers, labelled upwards as A, B, C (with C1, C2, C3 and C4) and D based on Cr, Mg, Ti, Al and V variation. Small scale reversals of the mentioned elements and the repetition of A, B, C and D sub-layers in each layer suggest that MML formed from two successive influxes of magma (indicated by relatively elevated values of MgO), which evolved by crystallization and cooling in a similar manner, to produce the A to D variation. Based on these observations and theoretical considerations, this study dismisses several models for the genesis of the MML: the immiscibility, the increased oxygen fugacity, the relative increase of H2O content of the melt, pressure variation within the magma chamber, magma mixing, and crustal rock contamination. The model proposed here for MML genesis involves the crystallization of both Ti-magnetite and ilmenite from a Fe-Ti-Ca-Al-rich melt (ferro-diorite) along its line of descent, and gravitational settling of oxides in a dynamic regime. The factor which triggered the crystallization of magnetite is a critical saturation of melt in magnetite (attaining saturation of magnetite and ilmenite in the melt after some silicates crystallized). The difference between the nature of silicate inclusions in magnetite and the nature of the magnetite floor, suggest that the Fe-rich magma was not in equilibrium with the cumulates from the present floor, but rather it was emplaced laterally on long distances, the melt being disrupted from its own cumulates. The absence of correlation between the Cr2O3 in magnetite and co-existing ilmenite can indicate than no in-situ fractional crystallization took place at the moment of magnetite accumulation, but rather that magnetite and ilmenite gravitationally accumulated and the grains mechanically mixed from a flowing magma. The model presented herein proposes a five stage model of MML formation: Stage 1 is represented by the intrusion of a Fe-T-Ca-Al-rich magma which expands laterally within a flat and thin magma chamber. Oxides start to crystallize within a dynamic regime of the magma. Stage 2 is given by the accumulation of oxides at the bottom of the new floor. Some plagioclase starts to crystallize (e.g. subhedral plagioclase in the MML of the Northern Lobe). Stage 3 is a short living static regime, where both plagioclase and magnetite crystallized, without fractionation, forming the thin magnetite-anorthosite layer separating the MML into two layers. Stage 4 is represented by a new influx of Fe-Ti-Ca-Al-rich magma which is emplaced above the magnetite-bearing anorthosite, flushing out the liquid which was in equilibrium with the anorthosite. The oxides started crystallizing in a dynamic regime, as in Stage 1. In stage 5, the accumulation of oxides produced the upper layer of the MML. Our interpretation is that the flow of the magma was more dynamic (probably more turbulent on long distances) in the MML of the Northern Lobe, compared to the MML in the Western and Eastern lobes, producing highly heterogeneous and imbricated thin layers of magnetitite and silicates. The presence of olivine corona around orthopyroxene suggests the incongruent melting of orthopyroxene, which points out towards a local re-heating of existing silicate layers, this being a strong argument for multiple injections in generation of MML. Massive crystallization of oxides produced the sulphur saturation of the magma and caused the precipitation of the igneous sulphides, which nucleated on the existing oxides. Later hydrothermal fluids (and/or late magmatic volatiles?) percolated the MML, producing chloritization of the included silicates, remobilization of igneous sulphides and precipitation of hydrothermal sulphides.
- Full Text:
- Date Issued: 2017
- Authors: Iorga-Pavel, Adina
- Date: 2017
- Subjects: Magnetite -- South Africa -- Bushveld Complex , Mineralogy -- South Africa -- Bushveld Complex , Oxides
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: http://hdl.handle.net/10962/7357 , vital:21248
- Description: The Main Magnetite Layer (MML) from the Northern, Eastern and Western lobes of the Bushveld Complex shows significant differences in textures and in mineral chemistry. The MML in the Eastern and Western lobes is massive, with rare, small and altered pyroxene inclusions. By contrast, the MML in the Northern Lobe is more heterogeneous, and it is made of anastomosed and sometimes imbricated, thin layers of magnetitite, magnetite-rich and silicate-rich rocks, where the inclusions in Ti-magnetite are more numerous and consist of mainly altered subhedral and anhedral plagioclase. The comparison of the maximum values of the oxides shows that the MML in the Northern Lobe has the highest content of V2O3 (1.97 wt%), TiO2 (22.49 wt%) and MgO (2.92 wt%), while the MML in the Eastern Lobe has the highest content of Cr2O3 (2.92 wt%) and Al2O3 (9.80 wt%), but lowest V2O3 (0.52 wt%). The lower TiO2 content and higher V2O3 content in the MML of the Northern and Western Lobes suggest lower oxidising conditions during the crystallization of oxides. The MML in all three studied lobes consists of two layers of magnetitite, suggesting that MML was formed by two separate magma influxes, probably on a diverse and complex type of magma chamber floor. The high TiO2 content in magnetite, together with the negative correlation between TiO2 and V2O3 suggest that the maximum V content should represent a “less evolved” and less oxidized melt. In this respect, higher concentrations V2O3 in magnetite can be expected in magnetitite layers with lower TiO2. It can be inferred that the Ti-magetite in the MML from the Eastern Lobe was formed from a more evolved (TiO2 and FeO enriched) and more oxidized (lower V2O3) melt, compared with the MML from the Northern and Western lobes. These findings can be used to illustrate: a) that high fO2 can be responsible for the relatively low V content in magnetite from Fe-Ti oxide ores and b) the vanadium in magnetite decreases significantly in more evolved cumulates, due to a decreasing fO2 with differentiation. Compositional profiles of Ti- magnetite along the stratigraphic height of the MML in the Eastern Lobe (composed of two layers, separated in the outcrop by a parting plane) depicts a cryptic variation with depth in each of the two layers, where each layer can be divided into four sublayers, labelled upwards as A, B, C (with C1, C2, C3 and C4) and D based on Cr, Mg, Ti, Al and V variation. Small scale reversals of the mentioned elements and the repetition of A, B, C and D sub-layers in each layer suggest that MML formed from two successive influxes of magma (indicated by relatively elevated values of MgO), which evolved by crystallization and cooling in a similar manner, to produce the A to D variation. Based on these observations and theoretical considerations, this study dismisses several models for the genesis of the MML: the immiscibility, the increased oxygen fugacity, the relative increase of H2O content of the melt, pressure variation within the magma chamber, magma mixing, and crustal rock contamination. The model proposed here for MML genesis involves the crystallization of both Ti-magnetite and ilmenite from a Fe-Ti-Ca-Al-rich melt (ferro-diorite) along its line of descent, and gravitational settling of oxides in a dynamic regime. The factor which triggered the crystallization of magnetite is a critical saturation of melt in magnetite (attaining saturation of magnetite and ilmenite in the melt after some silicates crystallized). The difference between the nature of silicate inclusions in magnetite and the nature of the magnetite floor, suggest that the Fe-rich magma was not in equilibrium with the cumulates from the present floor, but rather it was emplaced laterally on long distances, the melt being disrupted from its own cumulates. The absence of correlation between the Cr2O3 in magnetite and co-existing ilmenite can indicate than no in-situ fractional crystallization took place at the moment of magnetite accumulation, but rather that magnetite and ilmenite gravitationally accumulated and the grains mechanically mixed from a flowing magma. The model presented herein proposes a five stage model of MML formation: Stage 1 is represented by the intrusion of a Fe-T-Ca-Al-rich magma which expands laterally within a flat and thin magma chamber. Oxides start to crystallize within a dynamic regime of the magma. Stage 2 is given by the accumulation of oxides at the bottom of the new floor. Some plagioclase starts to crystallize (e.g. subhedral plagioclase in the MML of the Northern Lobe). Stage 3 is a short living static regime, where both plagioclase and magnetite crystallized, without fractionation, forming the thin magnetite-anorthosite layer separating the MML into two layers. Stage 4 is represented by a new influx of Fe-Ti-Ca-Al-rich magma which is emplaced above the magnetite-bearing anorthosite, flushing out the liquid which was in equilibrium with the anorthosite. The oxides started crystallizing in a dynamic regime, as in Stage 1. In stage 5, the accumulation of oxides produced the upper layer of the MML. Our interpretation is that the flow of the magma was more dynamic (probably more turbulent on long distances) in the MML of the Northern Lobe, compared to the MML in the Western and Eastern lobes, producing highly heterogeneous and imbricated thin layers of magnetitite and silicates. The presence of olivine corona around orthopyroxene suggests the incongruent melting of orthopyroxene, which points out towards a local re-heating of existing silicate layers, this being a strong argument for multiple injections in generation of MML. Massive crystallization of oxides produced the sulphur saturation of the magma and caused the precipitation of the igneous sulphides, which nucleated on the existing oxides. Later hydrothermal fluids (and/or late magmatic volatiles?) percolated the MML, producing chloritization of the included silicates, remobilization of igneous sulphides and precipitation of hydrothermal sulphides.
- Full Text:
- Date Issued: 2017
Mineralogical variation in the basal Upper Zone, Bushveld Igneous Complex, South Africa: implications for ore genesis and mineral extraction
- Van Huyssteen, Darryn Ashley
- Authors: Van Huyssteen, Darryn Ashley
- Date: 2017
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: http://hdl.handle.net/10962/5060 , vital:20762
- Full Text:
- Date Issued: 2017
- Authors: Van Huyssteen, Darryn Ashley
- Date: 2017
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: http://hdl.handle.net/10962/5060 , vital:20762
- Full Text:
- Date Issued: 2017
Geochemical exploration for copper - cobalt in the Democratic Republic of Congo, Central African Copperbelt: a case study on PR851
- Authors: Katombe-Kisumbule, Paul
- Date: 2016
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: http://hdl.handle.net/10962/3035 , vital:20354
- Description: The PR851 licence area is located at about 80 km west from the town of Likasi in the district of Haut-Katanga and 175 km north-west of Lubumbashi, the capital city of Katanga Province in the Democratic Republic of Congo. The exploration licence was granted by the government of the Democratic Republic of Congo to First Quantum Minerals Ltd through its Congolese subsidiary Compagnie Minière de Sakania Sprl (CoMiSa Sprl) under certificate N˚ CAMI/CR/70/2003 on the 10th of October 2003 for a period of 5 years with a possibility of renewal for 3 years in respect to the new Congolese mining code. The PR851 area lies on fragments of Mines Subgroup rocks of the Roan Group in the Congolese Copperbelt where most of the Cu-Co and stratiform-stratabound deposits such as Kipushi, Ruashi-Etoile, Kinsevere, Kipoi, Luishya, Luswishi, Shituru, Kamoya, Kambove, Tenke- Fungurume, Shinkolobwe, Swambo, Mindingi and Kamoto among others are found. During the 20th century, the Union Minière du Haut Katanga (U.M.H.K.) undertook mineral exploration in the Congolese Copperbelt and numerous copper- and cobalt-occurrences were identified (for instance Kibamba copper occurrence in PR851 area). From 2003, the Compagnie Minière de Sakania Sprl initiated a grassroots exploration program in PR851 area and geochemical exploration survey as one of the mineral exploration tools was implemented to aim at detecting copper and cobalt concentration in soil. The B horizon of the thick tropical soil in the area was sampled and soil samples were sent to Genalysis laboratories in Johannesburg, Republic of South Africa for main chemical analysis of Cu and Co only, whereas 10% of analyzed samples were dispatched to Perth, Western Australia for quality control analysis. Thresholds for anomalies of copper and cobalt were defined by literature comparison, standard deviations and spatial analysis. The anomalies were tested at a later stage by reverse circulation / diamond drilling during the year of 2005 to 2008 and the Cu-Co resources were estimated by Digital Mining Services of Harare, Zimbabwe in the year of 2008. Geological logging of chips from reverse circulation and diamond drill cores revealed that copper mineralization is represented by malachite, chrysocolla, chalcopyrite and bornite whereas cobalt mineralization appeared in form of heterogenite. The source of supergene mineralization remains unknown. Recommendations have been made to undertake more geological exploration work in order to fully investigate the geological setting and structural architecture of the region, which may result in a better understanding of the Cu-Co mineralization system and ore genesis. The latter has been no consensus up-to-date and different theories have been proposed to discuss the ore genesis, including syn- and dia- genetic, synorogenic and sulphide remobilization to late-to-post- orogenic Cu-Zn-Pb Kipushi-type deposit. However, geological observations favored that the diagenetic and syngenetic models are applicable to numerous deposits in the Central African Copperbelt.
- Full Text:
- Date Issued: 2016
- Authors: Katombe-Kisumbule, Paul
- Date: 2016
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: http://hdl.handle.net/10962/3035 , vital:20354
- Description: The PR851 licence area is located at about 80 km west from the town of Likasi in the district of Haut-Katanga and 175 km north-west of Lubumbashi, the capital city of Katanga Province in the Democratic Republic of Congo. The exploration licence was granted by the government of the Democratic Republic of Congo to First Quantum Minerals Ltd through its Congolese subsidiary Compagnie Minière de Sakania Sprl (CoMiSa Sprl) under certificate N˚ CAMI/CR/70/2003 on the 10th of October 2003 for a period of 5 years with a possibility of renewal for 3 years in respect to the new Congolese mining code. The PR851 area lies on fragments of Mines Subgroup rocks of the Roan Group in the Congolese Copperbelt where most of the Cu-Co and stratiform-stratabound deposits such as Kipushi, Ruashi-Etoile, Kinsevere, Kipoi, Luishya, Luswishi, Shituru, Kamoya, Kambove, Tenke- Fungurume, Shinkolobwe, Swambo, Mindingi and Kamoto among others are found. During the 20th century, the Union Minière du Haut Katanga (U.M.H.K.) undertook mineral exploration in the Congolese Copperbelt and numerous copper- and cobalt-occurrences were identified (for instance Kibamba copper occurrence in PR851 area). From 2003, the Compagnie Minière de Sakania Sprl initiated a grassroots exploration program in PR851 area and geochemical exploration survey as one of the mineral exploration tools was implemented to aim at detecting copper and cobalt concentration in soil. The B horizon of the thick tropical soil in the area was sampled and soil samples were sent to Genalysis laboratories in Johannesburg, Republic of South Africa for main chemical analysis of Cu and Co only, whereas 10% of analyzed samples were dispatched to Perth, Western Australia for quality control analysis. Thresholds for anomalies of copper and cobalt were defined by literature comparison, standard deviations and spatial analysis. The anomalies were tested at a later stage by reverse circulation / diamond drilling during the year of 2005 to 2008 and the Cu-Co resources were estimated by Digital Mining Services of Harare, Zimbabwe in the year of 2008. Geological logging of chips from reverse circulation and diamond drill cores revealed that copper mineralization is represented by malachite, chrysocolla, chalcopyrite and bornite whereas cobalt mineralization appeared in form of heterogenite. The source of supergene mineralization remains unknown. Recommendations have been made to undertake more geological exploration work in order to fully investigate the geological setting and structural architecture of the region, which may result in a better understanding of the Cu-Co mineralization system and ore genesis. The latter has been no consensus up-to-date and different theories have been proposed to discuss the ore genesis, including syn- and dia- genetic, synorogenic and sulphide remobilization to late-to-post- orogenic Cu-Zn-Pb Kipushi-type deposit. However, geological observations favored that the diagenetic and syngenetic models are applicable to numerous deposits in the Central African Copperbelt.
- Full Text:
- Date Issued: 2016
Geology, regional diamond exploration and diamond provenance of the proterozoic diamondiferous Umkondo conglomerates, Umkondo group, eastern Zimbabwe
- Authors: Zhou, Takawira
- Date: 2016
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: http://hdl.handle.net/10962/3598 , vital:20528
- Description: The Umkondo Sedimentary Basin in eastern Zimbabwe has been studied by various individuals and organizations since 1901. Their interest had been in finding limestone and beryl and base metal deposits, especially copper, iron and uranium, but these occurrences had proved to be of no economic value (Watson, 1969). The recent discovery of placer diamonds within the Proterozoic basal conglomerates of the Umkondo Sedimentary Basin has now attracted worldwide interest in the basin’s diamond economic potential, in understanding of the geology, and the diamond provenance of the Umkondo conglomerates. The Umkondo Sedimentary Basin basal conglomerate placer deposit might narrowly be defined as a mega-placer because of its sheer large size and high grades, especially on the 70,000 hectare western margin diamond dispersion halo where alluvial diamonds are being mined. Bluck, et al., (2005, pp 213) defines a diamond mega-placer as: . . . a number of linked deposits that are a result of one or a continuous process of transportation and deposition and holds or have held at least >= 50 million carats at >= 95% gem quality, for example, the Orange-Vaal dispersal, off the Kaapvaal craton in South Africa. On craton placers are residual, and transient placers are eroded and deposited into the exit drainage, while terminal placers, the final depositories of diamonds with the highest chances of being mega-placers are deposited into terminal basins like oceans and foreland basins. Though data is limited at the moment, the Umkondo conglomerates caratage is likely to run into hundreds of millions of carats, with a diamond gem content of between twenty and twenty-five percent, as is indicated from recent diamond production data. The greater part of the Umkondo diamonds are likely to be lodged beneath the deep gravels of the Middle and Lower Save River basin, because small remnant tilted mountain blocks and inselbergs forming the caps of hills are what remains of the host conglomerate on the western margin of the Umkondo Basin. Areas to be examined in this document will be the geology; the mode of formation of the Umkondo basin and its sedimentary system; the regional kimberlite exploration around the basin; and diamond production in the Marange diamond field, in order to come up with indications of the provenance of the diamonds within the Umkondo conglomerates. The kimberlite clusters in and around the Umkondo sedimentary basin have all proved to be barren or only nominally diamondiferous and that the kimberlites are between 200Ma and 500Ma and thus much younger than the greater than 1.1Ga Umkondo diamondiferous conglomerates. Studies so far undertaken have not managed to point to the origin, or provenance, of the Umkondo or Marange diamonds, which were discovered on the western edge of the Umkondo Basin and in the east of the basin below the Chimanimani Mountains along the Haroni River. This paper is an attempt to clear up some of the misconceptions surrounding the Marange diamond deposit and to raise interest in the urgent rquirement to study and understand the Umkondo Basin and the origin of its diamonds. The only meaningful studies on diamond occurrence and diamond exploration of the basin were undertaken from 1996 to 2006 by Kimberlitic Searches Zimbabwe (Pvt) Ltd, the then Zimbabwe kimberlite exploration arm of De Beers, Zimbabwe, in their quest to find kimberlites, which were thought to be related to the Umkondo alluvial diamond deposit. As will be shown in the following chapters, many of the discovered kimberlites range from very low grade to non-diamondiferous, and are much younger than the Umkondo conglomerates, whose diamonds are in turn a great deal older. Thus the basic question concerning the origin or provenance of the Umkondo placer diamonds still remains unresolved. Because of the sheer size of the basin, modern, wide-area-coverage, geophysical exploration methods become appropriate to effectively generate diamond potential targets for further examination. This document will attempt to collate various data available to paint a true picture of the state of exploration within the Umkondo Basin.
- Full Text:
- Date Issued: 2016
- Authors: Zhou, Takawira
- Date: 2016
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: http://hdl.handle.net/10962/3598 , vital:20528
- Description: The Umkondo Sedimentary Basin in eastern Zimbabwe has been studied by various individuals and organizations since 1901. Their interest had been in finding limestone and beryl and base metal deposits, especially copper, iron and uranium, but these occurrences had proved to be of no economic value (Watson, 1969). The recent discovery of placer diamonds within the Proterozoic basal conglomerates of the Umkondo Sedimentary Basin has now attracted worldwide interest in the basin’s diamond economic potential, in understanding of the geology, and the diamond provenance of the Umkondo conglomerates. The Umkondo Sedimentary Basin basal conglomerate placer deposit might narrowly be defined as a mega-placer because of its sheer large size and high grades, especially on the 70,000 hectare western margin diamond dispersion halo where alluvial diamonds are being mined. Bluck, et al., (2005, pp 213) defines a diamond mega-placer as: . . . a number of linked deposits that are a result of one or a continuous process of transportation and deposition and holds or have held at least >= 50 million carats at >= 95% gem quality, for example, the Orange-Vaal dispersal, off the Kaapvaal craton in South Africa. On craton placers are residual, and transient placers are eroded and deposited into the exit drainage, while terminal placers, the final depositories of diamonds with the highest chances of being mega-placers are deposited into terminal basins like oceans and foreland basins. Though data is limited at the moment, the Umkondo conglomerates caratage is likely to run into hundreds of millions of carats, with a diamond gem content of between twenty and twenty-five percent, as is indicated from recent diamond production data. The greater part of the Umkondo diamonds are likely to be lodged beneath the deep gravels of the Middle and Lower Save River basin, because small remnant tilted mountain blocks and inselbergs forming the caps of hills are what remains of the host conglomerate on the western margin of the Umkondo Basin. Areas to be examined in this document will be the geology; the mode of formation of the Umkondo basin and its sedimentary system; the regional kimberlite exploration around the basin; and diamond production in the Marange diamond field, in order to come up with indications of the provenance of the diamonds within the Umkondo conglomerates. The kimberlite clusters in and around the Umkondo sedimentary basin have all proved to be barren or only nominally diamondiferous and that the kimberlites are between 200Ma and 500Ma and thus much younger than the greater than 1.1Ga Umkondo diamondiferous conglomerates. Studies so far undertaken have not managed to point to the origin, or provenance, of the Umkondo or Marange diamonds, which were discovered on the western edge of the Umkondo Basin and in the east of the basin below the Chimanimani Mountains along the Haroni River. This paper is an attempt to clear up some of the misconceptions surrounding the Marange diamond deposit and to raise interest in the urgent rquirement to study and understand the Umkondo Basin and the origin of its diamonds. The only meaningful studies on diamond occurrence and diamond exploration of the basin were undertaken from 1996 to 2006 by Kimberlitic Searches Zimbabwe (Pvt) Ltd, the then Zimbabwe kimberlite exploration arm of De Beers, Zimbabwe, in their quest to find kimberlites, which were thought to be related to the Umkondo alluvial diamond deposit. As will be shown in the following chapters, many of the discovered kimberlites range from very low grade to non-diamondiferous, and are much younger than the Umkondo conglomerates, whose diamonds are in turn a great deal older. Thus the basic question concerning the origin or provenance of the Umkondo placer diamonds still remains unresolved. Because of the sheer size of the basin, modern, wide-area-coverage, geophysical exploration methods become appropriate to effectively generate diamond potential targets for further examination. This document will attempt to collate various data available to paint a true picture of the state of exploration within the Umkondo Basin.
- Full Text:
- Date Issued: 2016
Petrogenetic implications for the Merensky Reef: a platinum-group element distribution study from wide-reef facies in the western Bushveld Complex, RSA
- Authors: Largatzis, Savvas Anthony
- Date: 2016
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: http://hdl.handle.net/10962/3167 , vital:20380
- Description: Despite decades of research and its economic importance, the formation of the Merensky Reef still remains controversial. This study reports on the distribution of platinum-group elements within widereef facies in an attempt to identify petrogenetic controls in the formation of the Merensky Reef. Widereef Merensky was sampled from Eland Platinum Mines in the western Bushveld. Macroscopic investigation of the drillcore identified a basal chromitite stringer overlying an anorthositic footwall. The reef comprised a pyroxenite unit while the hangingwall comprised noritic, leuconoritic and anorthositic units (upwards the stratigraphy). Furthermore, an anorthositic seam was identified within the pyroxenite reef, near the top of the unit. Ophitic textures of orthopyroxene oikocrysts comprising inclusions of plagioclase chadacrysts suggest that the crystallization of plagioclase preceded the crystallization of orthopyroxene. Furthermore, plagioclase and orthopyroxene were shown to be in mineral disequilibrium with one another. Pervasive hydrous alteration features throughout the Merensky Reef suggest late stage deuteric alteration. Mineral chemistry of plagioclase cores recorded ranges for An content in the Merensky Reef as follows: An72-79 in the anorthositic footwall, An71-77 in the chromitite stringer, An45-78 in the pyroxenite reef unit, An47-73 in the anorthosite reef unit, An72-76 in the norite hangingwall, An75-77 in the leuconorite hangingwall and An72-77 in the anorthosite hangingwall. This suggest that the reef units were more evolved than the footwall and hangingwall units. Furthermore, plagioclase showed reverse zoning in the anorthosite footwall unit while normal zoning was identified in the anorthosite reef unit. This suggested that the footwall unit underwent reheating and re-equilibration with a hotter, more primitive magma (also evident in recrystallization textures) while the anorthositic reef unit cooled relatively slowly and interstitial plagioclase present within this unit equilibrated with a trapped, more evolved liquid. The pyroxenite reef unit shows enrichment in incompatible elements and corresponding negative Eu anomalies, indicating the presence of trapped liquids. Cu, Ni and S concentrations remained low throughout the reef with the exception of a peak underlying the anorthositic seam and further enrichment underlying this peak. Platinum-group element geochemistry identified two major peaks: an upper peak which coincided with the peaks for Cu, Ni and S, and showed preferential enrichment in Pd and Au relative to other PGE, and a lower peak which coincided with the presence of chromitite and showed the preferential enrichment of Os, Ir, Ru, Rh and Pt relative to Pd, Au, Cu and Ni. The formation of the lower peak was consistent with a model involving the co-precipitation of chromite and PGE clusters (as PGM) while the upper peak was attributed to a model involving the collection of PGE by an immiscible sulphide liquid. Moreover, high Cu/Pd and Pt/Pd ratios in the lower pyroxenite unit indicated a process involving sulphide fractional segregation and scavenging while the inverse, present within the upper pyroxenite unit, suggested a more dynamic system involving the introduction of PGE-undepleted magma and S during simultaneous sulphide precipitation. Furthermore, a separation of PPGE peaks from IPGE peaks was observed within the pyroxenite unit, indicating a different partitioning behavior between PPGE and IPGE. The separation of these peaks is attributed to a sulphide liquid fractionation model while depletion haloes occurring in the proximity of the main PGE peaks was suggested to form through an Ostwald-ripening type mechanism. The results of this study are consistent with a model for the formation of the Merensky Reef involving a combination of geochemical processes, including sulphide segregation and fractionation, as well as multiple replenishments of magma.
- Full Text:
- Date Issued: 2016
- Authors: Largatzis, Savvas Anthony
- Date: 2016
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: http://hdl.handle.net/10962/3167 , vital:20380
- Description: Despite decades of research and its economic importance, the formation of the Merensky Reef still remains controversial. This study reports on the distribution of platinum-group elements within widereef facies in an attempt to identify petrogenetic controls in the formation of the Merensky Reef. Widereef Merensky was sampled from Eland Platinum Mines in the western Bushveld. Macroscopic investigation of the drillcore identified a basal chromitite stringer overlying an anorthositic footwall. The reef comprised a pyroxenite unit while the hangingwall comprised noritic, leuconoritic and anorthositic units (upwards the stratigraphy). Furthermore, an anorthositic seam was identified within the pyroxenite reef, near the top of the unit. Ophitic textures of orthopyroxene oikocrysts comprising inclusions of plagioclase chadacrysts suggest that the crystallization of plagioclase preceded the crystallization of orthopyroxene. Furthermore, plagioclase and orthopyroxene were shown to be in mineral disequilibrium with one another. Pervasive hydrous alteration features throughout the Merensky Reef suggest late stage deuteric alteration. Mineral chemistry of plagioclase cores recorded ranges for An content in the Merensky Reef as follows: An72-79 in the anorthositic footwall, An71-77 in the chromitite stringer, An45-78 in the pyroxenite reef unit, An47-73 in the anorthosite reef unit, An72-76 in the norite hangingwall, An75-77 in the leuconorite hangingwall and An72-77 in the anorthosite hangingwall. This suggest that the reef units were more evolved than the footwall and hangingwall units. Furthermore, plagioclase showed reverse zoning in the anorthosite footwall unit while normal zoning was identified in the anorthosite reef unit. This suggested that the footwall unit underwent reheating and re-equilibration with a hotter, more primitive magma (also evident in recrystallization textures) while the anorthositic reef unit cooled relatively slowly and interstitial plagioclase present within this unit equilibrated with a trapped, more evolved liquid. The pyroxenite reef unit shows enrichment in incompatible elements and corresponding negative Eu anomalies, indicating the presence of trapped liquids. Cu, Ni and S concentrations remained low throughout the reef with the exception of a peak underlying the anorthositic seam and further enrichment underlying this peak. Platinum-group element geochemistry identified two major peaks: an upper peak which coincided with the peaks for Cu, Ni and S, and showed preferential enrichment in Pd and Au relative to other PGE, and a lower peak which coincided with the presence of chromitite and showed the preferential enrichment of Os, Ir, Ru, Rh and Pt relative to Pd, Au, Cu and Ni. The formation of the lower peak was consistent with a model involving the co-precipitation of chromite and PGE clusters (as PGM) while the upper peak was attributed to a model involving the collection of PGE by an immiscible sulphide liquid. Moreover, high Cu/Pd and Pt/Pd ratios in the lower pyroxenite unit indicated a process involving sulphide fractional segregation and scavenging while the inverse, present within the upper pyroxenite unit, suggested a more dynamic system involving the introduction of PGE-undepleted magma and S during simultaneous sulphide precipitation. Furthermore, a separation of PPGE peaks from IPGE peaks was observed within the pyroxenite unit, indicating a different partitioning behavior between PPGE and IPGE. The separation of these peaks is attributed to a sulphide liquid fractionation model while depletion haloes occurring in the proximity of the main PGE peaks was suggested to form through an Ostwald-ripening type mechanism. The results of this study are consistent with a model for the formation of the Merensky Reef involving a combination of geochemical processes, including sulphide segregation and fractionation, as well as multiple replenishments of magma.
- Full Text:
- Date Issued: 2016
An assessment of equilibrium in the Merensky Reef : a textural, geochemical and Nd isotope study of coexisting plagioclase and orthopyroxene from Winnaarshoek in the eastern Bushveld Complex, RSA
- Authors: Raines, Mark Douglas
- Date: 2014
- Subjects: Mines and mineral resources -- South Africa -- Bushveld Complex , Plagioclase , Neodymium , Petrology , Electron probe microanalysis , Isotope geology , Mineralogical chemistry , Crystallization
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: vital:5079 , http://hdl.handle.net/10962/d1015644
- Description: Evidence of mineral disequilibrium is presented for the Merensky Reef at Winnaarshoek in the eastern Bushveld Complex. Petrographic disequilibrium textures, disequilibrium in orthopyroxene, plagioclase and clinopyroxene mineral compositions as well as disequilibrium in Sm-Nd isotopic compositions of whole rock samples and coexisting plagioclase and orthopyroxene are presented. Disequilibrium textures presented include clinopyroxene exsolution lamellae in orthopyroxene; resorbed plagioclase in orthopyroxene or relict plagioclase; various inclusions such as orthopyroxene, plagioclase or clinopyroxene in larger oikocrysts of clinopyroxene or orthopyroxene; discontinuous rims of clinopyroxene surrounding orthopyroxene; resorbed orthopyroxene in clinopyroxene; and corona textures associated with olivine. These textures were used to derive a possible mineral crystallization sequence. At least two sequences of crystallization took place, both of which crystallized plagioclase first. One sequence then crystallized olivine which was then consumed to produce orthopyroxene which crystallized prior to late clinopyroxene. The other sequence indicates orthopyroxene crystallization after plagioclase crystallization, followed by crystallization of clinopyroxene. These sequences indicate at least two magmas were responsible for the genesis of the Merensky Reef and its hanging wall and footwall units. Compositionally, disequilibrium is evident in the range of compositions found in coexisting orthopyroxene, plagioclase and clinopyroxene with stratigraphic height, with particular reference to the change in mineral composition in each of the hanging wall, Reef and footwall units. Orthopyroxene compositions range in Mg numbers between 74.6 and 82.9 (77.4) in the hanging wall, 78.5 and 87.0 (avg. 81.1) in the Reef, and 77.9 and 84.1 (avg. 81.3) in the footwall. Plagioclase compositions range in An content between An64.9 and An82.3 (avg. An75.1) in the hanging wall, An56.8 to An70.8 (avg. An62.7) in the Reef, and An54.2 to An86.3 (avg. An73.2) in the footwall. In terms of Sm-Nd isotopic compositions, disequilibrium is evident between both whole rock samples and coexisting plagioclase and orthopyroxenes. Bulk rock Sm-Nd isotopic compositions show a range in ԐNd values between ԐNd (2.06 Ga) = -4.8 to -6.4 in the hangingwall, ԐNd (2.06 Ga) = -6.3 to -8.5 in the Reef, and ԐNd (2.06 Ga) = -4.5 to -6.3 in the footwall. Similar ԐNd values are present in the hanging wall and footwall units, with a clear “spike” in the Merensky Reef. ԐNd values in plagioclase are between ԐNd (2.06 Ga) = -5.8 and -7.8, while orthopyroxene isotopic Sm-Nd values are between ԐNd (2.06 Ga = -7.1 and -9.1. The mineral disequilibrium features presented within this study help elucidate the crystallization sequence of the magma as well as to constrain the contamination of the magma upon ascension and emplacement of the Merensky Reef. The results of this study favour a model where a mantle plume resulted in the ascent of a new magma which was contaminated by the assimilation of old, lower crust. Contamination took place prior to the possible lateral emplacement of the Merensky reef as a density current. 5-10% contamination of depleted mantle or a B2-“like” source by Archaean TTGs is modeled to achieve the contamination “spike” of ԐNd = -8.5 in the Merensky Reef.
- Full Text:
- Date Issued: 2014
- Authors: Raines, Mark Douglas
- Date: 2014
- Subjects: Mines and mineral resources -- South Africa -- Bushveld Complex , Plagioclase , Neodymium , Petrology , Electron probe microanalysis , Isotope geology , Mineralogical chemistry , Crystallization
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: vital:5079 , http://hdl.handle.net/10962/d1015644
- Description: Evidence of mineral disequilibrium is presented for the Merensky Reef at Winnaarshoek in the eastern Bushveld Complex. Petrographic disequilibrium textures, disequilibrium in orthopyroxene, plagioclase and clinopyroxene mineral compositions as well as disequilibrium in Sm-Nd isotopic compositions of whole rock samples and coexisting plagioclase and orthopyroxene are presented. Disequilibrium textures presented include clinopyroxene exsolution lamellae in orthopyroxene; resorbed plagioclase in orthopyroxene or relict plagioclase; various inclusions such as orthopyroxene, plagioclase or clinopyroxene in larger oikocrysts of clinopyroxene or orthopyroxene; discontinuous rims of clinopyroxene surrounding orthopyroxene; resorbed orthopyroxene in clinopyroxene; and corona textures associated with olivine. These textures were used to derive a possible mineral crystallization sequence. At least two sequences of crystallization took place, both of which crystallized plagioclase first. One sequence then crystallized olivine which was then consumed to produce orthopyroxene which crystallized prior to late clinopyroxene. The other sequence indicates orthopyroxene crystallization after plagioclase crystallization, followed by crystallization of clinopyroxene. These sequences indicate at least two magmas were responsible for the genesis of the Merensky Reef and its hanging wall and footwall units. Compositionally, disequilibrium is evident in the range of compositions found in coexisting orthopyroxene, plagioclase and clinopyroxene with stratigraphic height, with particular reference to the change in mineral composition in each of the hanging wall, Reef and footwall units. Orthopyroxene compositions range in Mg numbers between 74.6 and 82.9 (77.4) in the hanging wall, 78.5 and 87.0 (avg. 81.1) in the Reef, and 77.9 and 84.1 (avg. 81.3) in the footwall. Plagioclase compositions range in An content between An64.9 and An82.3 (avg. An75.1) in the hanging wall, An56.8 to An70.8 (avg. An62.7) in the Reef, and An54.2 to An86.3 (avg. An73.2) in the footwall. In terms of Sm-Nd isotopic compositions, disequilibrium is evident between both whole rock samples and coexisting plagioclase and orthopyroxenes. Bulk rock Sm-Nd isotopic compositions show a range in ԐNd values between ԐNd (2.06 Ga) = -4.8 to -6.4 in the hangingwall, ԐNd (2.06 Ga) = -6.3 to -8.5 in the Reef, and ԐNd (2.06 Ga) = -4.5 to -6.3 in the footwall. Similar ԐNd values are present in the hanging wall and footwall units, with a clear “spike” in the Merensky Reef. ԐNd values in plagioclase are between ԐNd (2.06 Ga) = -5.8 and -7.8, while orthopyroxene isotopic Sm-Nd values are between ԐNd (2.06 Ga = -7.1 and -9.1. The mineral disequilibrium features presented within this study help elucidate the crystallization sequence of the magma as well as to constrain the contamination of the magma upon ascension and emplacement of the Merensky Reef. The results of this study favour a model where a mantle plume resulted in the ascent of a new magma which was contaminated by the assimilation of old, lower crust. Contamination took place prior to the possible lateral emplacement of the Merensky reef as a density current. 5-10% contamination of depleted mantle or a B2-“like” source by Archaean TTGs is modeled to achieve the contamination “spike” of ԐNd = -8.5 in the Merensky Reef.
- Full Text:
- Date Issued: 2014
Distribution of iron-titanium oxides in the vanadiferous main magnetite seam of the upper zone : Northern limb, Bushveld complex
- Authors: Gwatinetsa, Demand
- Date: 2014
- Subjects: Igneous rocks -- South Africa -- Bushveld Complex , Sulfide minerals -- South Africa -- Bushveld Complex , Vanadium -- South Africa -- Bushveld Complex , Titanium dioxide -- South Africa -- Bushveld Complex , Ferric oxide -- South Africa -- Bushveld Complex , Geology -- South Africa -- Bushveld Complex , Mineralogy -- South Africa -- Bushveld Complex , Mines and mineral resources -- South Africa
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: vital:5063 , http://hdl.handle.net/10962/d1013281
- Description: The main magnetite seam of the Upper Zone of the Rustenburg Layered Suite (SACS, 1980) on the Bushveld Complex is known to host the world‘s largest vanadium bearing titaniferous iron ores. The vanadiferous titanomagnetites, contain vanadium in sufficient concentrations (1.2 - 2.2 per cent V₂O₅) to be considered as resources and vanadium has been mined historically by a number of companies among them Anglo-American, Highveld Steel and Vanadium and VanMag Resources as well as currently by Evraz Highveld Steel and Vanadium Limited of South Africa. The titanomagnetites contain iron ore in the form of magnetite and titanium with concentrations averaging 50-75 per cent FeO and 12-21 per cent TiO₂. The titaniferous iron ores have been historically dismissed as a source of iron and titanium, due to the known difficulties of using iron ore with high titania content in blast furnaces. The economic potential for the extractability of the titaniferous magnetites lies in the capacity of the ores to be separated into iron rich and titanium rich concentrates usually through, crushing, grinding and magnetic separation. The separatability of iron oxides and titanium oxides, is dependent on the nature in which the titanium oxide occurs, with granular ilmenite being the most favourable since it can be separated from magnetite via magnetic separation. Titanium that occurs as finely exsolved lamellae or as iron-titanium oxides with low titania content such as ulvospinel render the potential recoverability of titanium poor. The Upper Zone vanadiferous titanomagnetites contain titanium in various forms varying from discrete granular ilmenite to finely exsolved lamellae as well as occurring as part of the minerals ulvospinel (Fe₂TiO₄) and titanomagnetite (a solid solution series between ulvospinel and magnetite) . Discrete ilmenite constitutes between 3-5 per cent by volume of the massive titanomagnetite ores, and between 5-10 per cent by volume of the magnetite-plagioclase cumulates with more than 50 per cent opaque oxide minerals. The purpose of this research was to investigate the mineralogical setting and distribution of the iron and titanium oxides within the magnetitite layers from top to bottom as well as spatially along a strike length of 2 000m to determine the potential for the titanium to be extracted from the titanomagnetite ores. The titanomagnetites of the Upper Zone of the Bushveld Complex with particular reference to the Northern Limb where this research was conducted contains titanium oxides as discrete ilmenite grains but in low concentrations whose potential for separate economic extraction will be challenging. The highest concentration of titanium in the magnetite ores is not contained in the granular ilmenite, but rather in ulvospinel and titanomagnetite as illustrated by the marked higher concentration of TiO₂ in the massive ores which contain less granular ilmenite in comparison to the disseminated ores which contain 3 to 8 percentage points higher granular ilmenite than the massive ores. On the scale of the main magnetite seam, the TiO₂ content increases with increasing stratigraphic height from being completely absent in the footwall anorthosite. The V₂2O₅ content also increases with stratigraphic height except for in one of the 3 boreholes where it drops with increasing height. The decrease or increase patterns are repeated in every seam. The titanomagnetites of the main magnetite seam display a variety of textures from coarse granular magnetite and ilmenite, to trellis ilmenite lamellae, intergranular ilmenite and magnesian spinels and fine exsolution lamellae of ulvospinel and ferro-magnesian spinels parallel to the magnetite cleavage. The bottom contact of the main magnetite seam is very sharp and there is no titanium or vanadium in the footwall barely 10cm below the contact. Chromium is present in the bottom of the 4 layers that constitute the main magnetite seam and it upwards decreases rapidly. In boreholes P21 and P55, there are slight reversals in the TiO₂ and V₂O₅ content towards the top of the magnetite seams.
- Full Text:
- Date Issued: 2014
- Authors: Gwatinetsa, Demand
- Date: 2014
- Subjects: Igneous rocks -- South Africa -- Bushveld Complex , Sulfide minerals -- South Africa -- Bushveld Complex , Vanadium -- South Africa -- Bushveld Complex , Titanium dioxide -- South Africa -- Bushveld Complex , Ferric oxide -- South Africa -- Bushveld Complex , Geology -- South Africa -- Bushveld Complex , Mineralogy -- South Africa -- Bushveld Complex , Mines and mineral resources -- South Africa
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: vital:5063 , http://hdl.handle.net/10962/d1013281
- Description: The main magnetite seam of the Upper Zone of the Rustenburg Layered Suite (SACS, 1980) on the Bushveld Complex is known to host the world‘s largest vanadium bearing titaniferous iron ores. The vanadiferous titanomagnetites, contain vanadium in sufficient concentrations (1.2 - 2.2 per cent V₂O₅) to be considered as resources and vanadium has been mined historically by a number of companies among them Anglo-American, Highveld Steel and Vanadium and VanMag Resources as well as currently by Evraz Highveld Steel and Vanadium Limited of South Africa. The titanomagnetites contain iron ore in the form of magnetite and titanium with concentrations averaging 50-75 per cent FeO and 12-21 per cent TiO₂. The titaniferous iron ores have been historically dismissed as a source of iron and titanium, due to the known difficulties of using iron ore with high titania content in blast furnaces. The economic potential for the extractability of the titaniferous magnetites lies in the capacity of the ores to be separated into iron rich and titanium rich concentrates usually through, crushing, grinding and magnetic separation. The separatability of iron oxides and titanium oxides, is dependent on the nature in which the titanium oxide occurs, with granular ilmenite being the most favourable since it can be separated from magnetite via magnetic separation. Titanium that occurs as finely exsolved lamellae or as iron-titanium oxides with low titania content such as ulvospinel render the potential recoverability of titanium poor. The Upper Zone vanadiferous titanomagnetites contain titanium in various forms varying from discrete granular ilmenite to finely exsolved lamellae as well as occurring as part of the minerals ulvospinel (Fe₂TiO₄) and titanomagnetite (a solid solution series between ulvospinel and magnetite) . Discrete ilmenite constitutes between 3-5 per cent by volume of the massive titanomagnetite ores, and between 5-10 per cent by volume of the magnetite-plagioclase cumulates with more than 50 per cent opaque oxide minerals. The purpose of this research was to investigate the mineralogical setting and distribution of the iron and titanium oxides within the magnetitite layers from top to bottom as well as spatially along a strike length of 2 000m to determine the potential for the titanium to be extracted from the titanomagnetite ores. The titanomagnetites of the Upper Zone of the Bushveld Complex with particular reference to the Northern Limb where this research was conducted contains titanium oxides as discrete ilmenite grains but in low concentrations whose potential for separate economic extraction will be challenging. The highest concentration of titanium in the magnetite ores is not contained in the granular ilmenite, but rather in ulvospinel and titanomagnetite as illustrated by the marked higher concentration of TiO₂ in the massive ores which contain less granular ilmenite in comparison to the disseminated ores which contain 3 to 8 percentage points higher granular ilmenite than the massive ores. On the scale of the main magnetite seam, the TiO₂ content increases with increasing stratigraphic height from being completely absent in the footwall anorthosite. The V₂2O₅ content also increases with stratigraphic height except for in one of the 3 boreholes where it drops with increasing height. The decrease or increase patterns are repeated in every seam. The titanomagnetites of the main magnetite seam display a variety of textures from coarse granular magnetite and ilmenite, to trellis ilmenite lamellae, intergranular ilmenite and magnesian spinels and fine exsolution lamellae of ulvospinel and ferro-magnesian spinels parallel to the magnetite cleavage. The bottom contact of the main magnetite seam is very sharp and there is no titanium or vanadium in the footwall barely 10cm below the contact. Chromium is present in the bottom of the 4 layers that constitute the main magnetite seam and it upwards decreases rapidly. In boreholes P21 and P55, there are slight reversals in the TiO₂ and V₂O₅ content towards the top of the magnetite seams.
- Full Text:
- Date Issued: 2014
Petrogenesis and metallogenesis of the Panzhihua Fe-Ti oxide ore-bearing mafic layered intrusion, SW China
- Authors: Howarth, Geoffrey Hamilton
- Date: 2013
- Subjects: Petrogenesis Metallogeny Intrusions (Geology) -- China -- Panzhihua Metallogenic provinces -- China -- Panzhihua Igneous rocks -- China -- Panzhihua Geochemistry Iron Titanium Oxides Ores Magmas
- Language: English
- Type: Thesis , Doctoral , PhD
- Identifier: vital:4915 , http://hdl.handle.net/10962/d1001810
- Description: The Panzhihua intrusion is one of several large Fe-Ti oxide ore bearing intrusions related to the major flood volcanism of the Emeishan Large Igneous Province (ELIP), SW China. The Panzhihua intrusion in particular has recently become the focus of numerous studies owing to the excellent exposure in large open pit mining operations. The formation of Fe-Ti oxide ore layers has been the focus of these studies and has become a somewhat controversial topic with three separate models currently proposed for ore formation. The gabbroic Panzhihua intrusion extends for ± 19 km along strike, has a maximum thickness of 3000 m and hosts extensive (up to 60 m thick) Fe-Ti oxide ore layers in the lower portions of the intrusion. The intrusion has been divided into five zones: marginal zone (MGZ), lower zone (LZ), middle zone A (MZa), middle zone b (MZb) and the upper zone (UZ). The gabbroic rocks are comprised of plagioclase, clinopyroxene and interstitial Fe-Ti oxides with minor olivine. Apatite is present within the MZb only and shows no correlation with Fe-Ti oxide ore layers. Fe-Ti oxides are present throughout the stratigraphy of the intrusion. This is unlike typical layered intrusions where significant Fe-enrichment through fractionation of Fe-poor silicate phases (i.e. plagioclase) is required before Fe-Ti oxide saturation. There are no oxide-free cumulate rocks at the Panzhihua intrusion, implying either an evolved parent magma or very high Fe content of the source rocks. I present here new mineral composition data, whole-rock major and trace element geochemistry along with whole-rock Sr-Nd isotopes and PGEs in order to constrain the evolution of the Panzhihua parent magma en route from source to chamber and the formation of Fe-Ti oxide ore layers. Furthermore an initial pilot study using O-isotope data is conducted on Ti-magnetite and plagioclase separates from gabbroic vs. ore rocks. Results are coupled with detailed thermodynamic modeling using the software PELE in order to further constrain Fe-Ti oxide ore layer formation. The intrusion is characterised by extreme depletion of PGEs relative to the coeval flood basalts and picrites. High Cu/Pd and Pd/Pt imply two separate stages of S-saturated and S-undersaturated depletion of PGEs. Pd is highly compatible in sulphide and is quickly scavenged by sulphide liquids resulting in an increase in Cu/Pd of the residual liquid. Furthermore decoupling of Pd and Pt can be achieved by either late stage hydrothermal alteration or through S-undersaturated stage of PGE depletion where Pt is scavenged by Pt-rich alloys or oxide minerals. I show that the latter is more likely. Fractionation modeling suggests that the Panzhihua parent magma formed at depth from original picritic magma. This is consistent with several other recent studies on other layered intrusions of the ELIP. Sr-Nd isotopic ratios indicate very little crustal contamination has occurred en route to the current chamber. Sr and Nd concentrations of footwall rocks are too low to produce any significant change in initial Sr and Nd isotopic ratios of the intruding basaltic magmas, indicating that crustal contamination will not be indicated by Sr-Nd isotopic ratios. Gradational change in the Sr-Nd isotope ratios across the MGZ provides strong evidence for formation in an open system by multiple replenishments of progressively less contaminated magmas from depth. Contamination is difficult to constrain but must be occurring prior to emplacement at the current level (low Sr and Nd contents of footwall). A gradational upward decrease in highly incompatible element across the MGZ can then be explained by continuous magma flow, which effectively removes the evolved intercumulus liquids from the growing cumulate pile at the base of the chamber. The initial stages of formation of the Panzhihua intrusion are interpreted to result from prolonged low volume pulses of magma into a slowly opening chamber. The timing of Fe-Ti oxide crystallisation is fundamental in the understanding of the petrogenesis of ore layers. Distinct geochemical variation in whole-rock Fe2O3/TiO2 and Zr/Nb indicates that Timagnetite is the dominant oxide within the lower ± 270 m of the intrusion whereas above this level both Ti-magnetite and ilmenite are present as cumulus phases. This is interpreted to indicate a variation in the fO2 where the lower intrusion crystallises at higher fO2 relative to that above this level. Silicates within the ore layers, in particular plagioclase, are highly embayed and resorped where in contact with Fe-Ti oxides. This characteristic of the silicate grains implies early crystallisation prior to Fe-Ti oxides with subsequent disequilibrium conditions resulting in resorption. Furthermore distinct reaction rims of kaersutite amphibole, Fo-enriched olivine, An-enriched plagioclase and pleonaste are observed. The abundance of amphibole suggests H2O involvement in this reaction and consumption of silicates. A model for parent magma crystallisation at various H2O contents indicates that plagioclase crystallisation temperature is very sensitive to H2O content of the parent magma. Plagioclase crystallises early for “dry” compositions but significantly later for “wet” compositions. Fe-Ti oxide ore layers are generally well layered, contain gabbroic xenoliths and are observed raversing/cross-cutting the cumulate stratigraphy. I present here a new model for ore layer formation in order to account for these distinct features of the ore layers. A model invoking multiple replenishments of magma with variable oxide microphenocryst content, H2O content and volume is proposed. Magma evolving in the plumbing system and fed to the Panzhihua chamber is variably enriched in H2O, which results in significantly different crystallisation paths. High H2O magmas (> 2 wt %) crystallise Fe-Ti oxides early whereas low H2O magmas (< 1 wt %) crystallise oxides late. Early pulses of H2O-poor magma crystallise a sequence of plag+cpx+Fe-Ti oxide (±ol). Later pulses of H2Orich magma subsequently intrude the partially crystallised cumulate sequence incorporating and consuming previously crystallised silicates with subsequent early crystallisation of Ti-magnetite and formation of ore layers. H2O-rich magmas likely have suspended Ti-magnetite microphenocrysts as well, which crystallise at depth in the plumbing system. This model can account for the various characteristic features of the Fe-Ti oxide ore layers at the Panzhihua intrusion as well as other Fe-Ti oxide ore bearing intrusions in the region.
- Full Text:
- Date Issued: 2013
- Authors: Howarth, Geoffrey Hamilton
- Date: 2013
- Subjects: Petrogenesis Metallogeny Intrusions (Geology) -- China -- Panzhihua Metallogenic provinces -- China -- Panzhihua Igneous rocks -- China -- Panzhihua Geochemistry Iron Titanium Oxides Ores Magmas
- Language: English
- Type: Thesis , Doctoral , PhD
- Identifier: vital:4915 , http://hdl.handle.net/10962/d1001810
- Description: The Panzhihua intrusion is one of several large Fe-Ti oxide ore bearing intrusions related to the major flood volcanism of the Emeishan Large Igneous Province (ELIP), SW China. The Panzhihua intrusion in particular has recently become the focus of numerous studies owing to the excellent exposure in large open pit mining operations. The formation of Fe-Ti oxide ore layers has been the focus of these studies and has become a somewhat controversial topic with three separate models currently proposed for ore formation. The gabbroic Panzhihua intrusion extends for ± 19 km along strike, has a maximum thickness of 3000 m and hosts extensive (up to 60 m thick) Fe-Ti oxide ore layers in the lower portions of the intrusion. The intrusion has been divided into five zones: marginal zone (MGZ), lower zone (LZ), middle zone A (MZa), middle zone b (MZb) and the upper zone (UZ). The gabbroic rocks are comprised of plagioclase, clinopyroxene and interstitial Fe-Ti oxides with minor olivine. Apatite is present within the MZb only and shows no correlation with Fe-Ti oxide ore layers. Fe-Ti oxides are present throughout the stratigraphy of the intrusion. This is unlike typical layered intrusions where significant Fe-enrichment through fractionation of Fe-poor silicate phases (i.e. plagioclase) is required before Fe-Ti oxide saturation. There are no oxide-free cumulate rocks at the Panzhihua intrusion, implying either an evolved parent magma or very high Fe content of the source rocks. I present here new mineral composition data, whole-rock major and trace element geochemistry along with whole-rock Sr-Nd isotopes and PGEs in order to constrain the evolution of the Panzhihua parent magma en route from source to chamber and the formation of Fe-Ti oxide ore layers. Furthermore an initial pilot study using O-isotope data is conducted on Ti-magnetite and plagioclase separates from gabbroic vs. ore rocks. Results are coupled with detailed thermodynamic modeling using the software PELE in order to further constrain Fe-Ti oxide ore layer formation. The intrusion is characterised by extreme depletion of PGEs relative to the coeval flood basalts and picrites. High Cu/Pd and Pd/Pt imply two separate stages of S-saturated and S-undersaturated depletion of PGEs. Pd is highly compatible in sulphide and is quickly scavenged by sulphide liquids resulting in an increase in Cu/Pd of the residual liquid. Furthermore decoupling of Pd and Pt can be achieved by either late stage hydrothermal alteration or through S-undersaturated stage of PGE depletion where Pt is scavenged by Pt-rich alloys or oxide minerals. I show that the latter is more likely. Fractionation modeling suggests that the Panzhihua parent magma formed at depth from original picritic magma. This is consistent with several other recent studies on other layered intrusions of the ELIP. Sr-Nd isotopic ratios indicate very little crustal contamination has occurred en route to the current chamber. Sr and Nd concentrations of footwall rocks are too low to produce any significant change in initial Sr and Nd isotopic ratios of the intruding basaltic magmas, indicating that crustal contamination will not be indicated by Sr-Nd isotopic ratios. Gradational change in the Sr-Nd isotope ratios across the MGZ provides strong evidence for formation in an open system by multiple replenishments of progressively less contaminated magmas from depth. Contamination is difficult to constrain but must be occurring prior to emplacement at the current level (low Sr and Nd contents of footwall). A gradational upward decrease in highly incompatible element across the MGZ can then be explained by continuous magma flow, which effectively removes the evolved intercumulus liquids from the growing cumulate pile at the base of the chamber. The initial stages of formation of the Panzhihua intrusion are interpreted to result from prolonged low volume pulses of magma into a slowly opening chamber. The timing of Fe-Ti oxide crystallisation is fundamental in the understanding of the petrogenesis of ore layers. Distinct geochemical variation in whole-rock Fe2O3/TiO2 and Zr/Nb indicates that Timagnetite is the dominant oxide within the lower ± 270 m of the intrusion whereas above this level both Ti-magnetite and ilmenite are present as cumulus phases. This is interpreted to indicate a variation in the fO2 where the lower intrusion crystallises at higher fO2 relative to that above this level. Silicates within the ore layers, in particular plagioclase, are highly embayed and resorped where in contact with Fe-Ti oxides. This characteristic of the silicate grains implies early crystallisation prior to Fe-Ti oxides with subsequent disequilibrium conditions resulting in resorption. Furthermore distinct reaction rims of kaersutite amphibole, Fo-enriched olivine, An-enriched plagioclase and pleonaste are observed. The abundance of amphibole suggests H2O involvement in this reaction and consumption of silicates. A model for parent magma crystallisation at various H2O contents indicates that plagioclase crystallisation temperature is very sensitive to H2O content of the parent magma. Plagioclase crystallises early for “dry” compositions but significantly later for “wet” compositions. Fe-Ti oxide ore layers are generally well layered, contain gabbroic xenoliths and are observed raversing/cross-cutting the cumulate stratigraphy. I present here a new model for ore layer formation in order to account for these distinct features of the ore layers. A model invoking multiple replenishments of magma with variable oxide microphenocryst content, H2O content and volume is proposed. Magma evolving in the plumbing system and fed to the Panzhihua chamber is variably enriched in H2O, which results in significantly different crystallisation paths. High H2O magmas (> 2 wt %) crystallise Fe-Ti oxides early whereas low H2O magmas (< 1 wt %) crystallise oxides late. Early pulses of H2O-poor magma crystallise a sequence of plag+cpx+Fe-Ti oxide (±ol). Later pulses of H2Orich magma subsequently intrude the partially crystallised cumulate sequence incorporating and consuming previously crystallised silicates with subsequent early crystallisation of Ti-magnetite and formation of ore layers. H2O-rich magmas likely have suspended Ti-magnetite microphenocrysts as well, which crystallise at depth in the plumbing system. This model can account for the various characteristic features of the Fe-Ti oxide ore layers at the Panzhihua intrusion as well as other Fe-Ti oxide ore bearing intrusions in the region.
- Full Text:
- Date Issued: 2013
- «
- ‹
- 1
- ›
- »