Revising the distribution of mangrove forests in South Africa and changes in growth of mangrove species along a latitudinal gradient
- Authors: Bolosha, Uviwe
- Date: 2017
- Subjects: Mangrove ecology -- South Africa , Mangrove forests -- South Africa , Mangrove plants -- South Africa -- Effect of temperature on
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: http://hdl.handle.net/10962/7544 , vital:21271
- Description: Mangrove forests are a diverse assemblage of trees and shrubs that are adapted to a saline and tidally inundated environment. The global spread of mangrove species is affected by climate, with most confined to areas that are warmer and moist. At a global scale, temperature limits the distribution of mangrove forests but on a regional scale and local scale, rainfall, river flow and tidal exchange have a strong effect on the distribution and biomass of mangrove forests. Other factors that play a role in limiting growth and distribution of mangroves include accessibility of suitable habitats for growth and also conditions that are suitable for propagule dispersal. The objectives of this study were to review the distribution of mangroves in South Africa and determine the number of extreme temperature events that may limit further distribution and secondly to measure growth rates of mangrove species at Mngazana and Nahoon Estuary and the nutrient pools in the sediment of these forests. In 1982, Ward and Steinke published a list of estuaries where mangroves were present. The current study sampled the population structure, microclimate and level of expansion in two estuaries within and outside of the published range. The minimum, maximum temperature and number of extreme temperature events were measured using iButtons. Mangrove expansion will be limited by minimum temperatures (1.1 ° C) and an increase in extreme temperature events (830) (<5 ° C and 5- 10 ° C) at the latitudinal limits. Expansion of A. marina at Kwelera and Tyolomnqa Estuary was evident but sapling survival was low. Mangroves have expanded within and outside the range proposed by Ward and Steinke (1982), but are limited by physical factors, restricted by the presence of saltmarsh and other estuarine macrophytes and natural disturbance regimes. An increase in population growth was recorded over the years at both Mngazana and Nahoon Estuary. Nutrients, (ammonium, nitrates + nitrites and soluble reactive phosphorus) varied amongst sites and were related to seasonality. Nitrogen in both estuaries was available in the form of ammonium (NH4) and its concentration was generally higher (1.3-76.2 pm) than other forms of nitrogen (0.07-6.3 µm). Soluble reactive phosphorus (SRP) was higher during the wet seasons in both estuaries. An increase in porewater salinity since 2007 (41.3 practical salinity unit (PSU)) was measured at Mngazana and this is a result of freshwater abstraction and low rainfall. A. marina saplings and adults grew significantly faster at Nahoon Estuary (the distributional limit) (11.1 ± 1.1 cm year-¹) compared to Mngazana Estuary (5.3 ± 1.8 cm year-¹). Different mangrove species and forests respond differently to environmental factors and changes in mangrove distribution is expected in South Africa but changes are expected to happen slowly and opportunistically.
- Full Text:
- Date Issued: 2017
The response of the red mangrove rhizophora mucronata lam, to changes in salinity, inundation and light : predictions for future climate change
- Authors: Hoppe-Speer, Sabine Clara Lisa
- Date: 2009
- Subjects: Mangrove plants , Climatic changes , Red mangrove
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: vital:10616 , http://hdl.handle.net/10948/1249 , Mangrove plants , Climatic changes , Red mangrove
- Description: Mangrove forests are subjected to many environmental factors which influence species distribution, zonation patterns as well as succession. Important driving factors in these forests are salinity, water level fluctuations and available light. This study investigated the response of red mangrove (Rhizophora mucronata Lam.) seedlings to these factors in controlled laboratory experiments. Increase in salinity and prolonged inundation within estuaries are predicted impacts resulting from sea level rise due to climate change. The study investigated the effect of five salinity treatments (0, 8, 18, 35 and 45 ppt) with a semi-diurnal tidal cycle on seedling growth. In a separate experiment the effect of different inundation treatments: no inundation, 3, 6, 9 hour tidal cycles and continuous inundation (24 h) were investigated. Both morphological and physiological responses of R. mucronata seedlings were measured. There was a decrease in growth (plant height, biomass and leaf production) with increasing salinity. Seedlings in the seawater, hypersaline and no inundation treatments showed symptoms of stress, having increased leaf necrosis ("burn marks"). The highest growth occurred in the low salinity (8 ppt) treatment, but the highest photosynthetic performance and stomatal conductance occurred in the freshwater treatment (0 ppt). The typical response of stem elongation with increasing inundation was observed in the 24 hr inundation treatment. In the light and salinity combination study there were ten different treatments of five different light treatments (unshaded, 20 percent, 50 percent, 80 percent and 90 percent shade) combined with two salinity concentrations (18 and 35 ppt). In this study the seedling growth: plant height, biomass, leaf surface area and leaf production were higher in the moderate salinity (18 ppt) treatments compared to the seawater (35 ppt) treatments. Biomass in the 35 ppt experiment decreased with increasing shade as well as in the unshaded treatments. Photosynthetic performance and stomatal conductance were lower for the unshaded treatment in both 18 and 35 ppt salinity compared to all other treatments with the same salinity. This suggests that R. mucronata more shade than sun tolerant, but overall it can be concluded that the species has a broad tolerance range. The results may be relevant in mangrove rehabilitation and predicting responses to climate change. This is important as mangrove ecosystems may adapt to changing sea levels and in order to restore areas it will be necessary to choose the mangrove species which will grow best. The results may also help to increase the protection of existing mangrove habitats.
- Full Text:
- Date Issued: 2009