Floating sulphur biofilms structure, function and biotechnology
- Authors: Molwantwa, Jennifer Balatedi
- Date: 2008
- Subjects: Biofilms Sulfur Acid mine drainage -- South Africa Mine water -- Purification -- Biological treatment Microbial ecology
- Language: English
- Type: Thesis , Doctoral , PhD
- Identifier: vital:3958 , http://hdl.handle.net/10962/d1004017
- Description: Mine wastewaters generated during active production operations, and decanting streams following mine closure have major environmental impacts, and volumes requiring treatment are expected to increase substantially as the South African mining industry matures. Biological treatment of mine waters has been the subject of increasing interest, where sulphate reducing bacteria are employed for the reduction of sulphate to sulphide, precipitation of metals and the production of alkalinity. However, the sulphide if not removed from the system can be oxidised back to sulphate. As a result there have been limitations especially in the provision of technological options that are sustainable over the long-term, where the total sulphur (in its different forms) can be removed from the system. These, however, are the subject of a number of constraints including, importantly, the process capability to remove reduced sulphur from the treated stream, in one of its oxidation states, and thus linearise the biological sulphur cycle. This remains a major bottleneck in the development of biological wastewater treatment technology. Floating sulphur biofilms are observed as surface layers in numerous aquatic sulphide-rich environments, and it has been suggested that they play a role in the biological cycling of sulphur. The use of sulphur biofilms for the removal of elemental sulphur was identified in this study as a possible means for addressing the technological bottleneck, especially in passive wastewater treatment systems. There is, however, little documented information in the literature on the structure of floating sulphur biofilms, the microbial species responsible for their occurrence or bio-process applications of the system. A linear flow channel reactor was developed to simulate natural conditions and enabled the study of floating sulphur biofilm under controlled laboratory conditions. It was observed that these biofilms developed through three distinct stages termed Thin, Sticky and Brittle films. A microprobe study showed the presence of a steep Redox gradient established across (260 to 380 μm) depth of the floating sulphur biofilm of ~ 0 to -200 mV (top to bottom), which correlated with pH and sulphide gradients across the system. Structural investigations embedded in an exopolymeric matrix containing clearly defined channels and pores. Sulphur crystals were found to develop within the biofilm and above a certain size these disengaged and then settled in the liquid phase below the biofilm. These features, together with the ability of the biofilm to remain suspended at the air/water interface thus provide the surface requirement, and indicate that these structures may be understood as “true” biofilms. In order to study an apparent functional differentiation within the floating sulphur biofilm system, a method was developed to expand its various components over a 13 cm length of agarose tube and across which an oxygen/sulphide gradient was established. This was done by inserting a sulphide plug in the bottom of the tube, overlaying this with the biofilm mixed and suspended in agarose and leaving the tube to open air. After allowing for growth, the different components of the microbial population occurring at various levels across the oxygen/sulphide gradient were sampled. The microbial population was found to resort in distinct functional layers. Aerobes including Acidithiobacillus and Azoarcus, Acidithiobacillus, Thiothrix, Thiovirga and Sulfurimonas were found in the upper oxidised layer. Aerobe and facultative anaerobes such as Chryseobacterium, Bacteroides and Planococcus were found in the middle and heterotrophic anaerobes such as Brevundimonas and uncultured anaerobes were found in the bottom anoxic layer. This enabled the development of a first descriptive structural/functional model accounting for the performance of floating sulphur biofilms. The potential of the floating sulphur biofilm for use as a bioprocess unit operation for sulphide removal in lignocellulose-based low-flow passive systems for acid mine drainage wastewater treatment was investigated. The linear flow channel reactor was scaled up and it was shown that the optimum sulphide removal of 74 % and sulphur recovery of 60 % could be achieved at 20 °C. In a further scale up of the linear channel reactor, the floating sulphur biofilm reactor was developed and operated. Sulphide removal and sulphur recovery of 65 and 56 % respectively was measured in the process. An understanding of the nature and function of floating sulphur biofilms and the further development of their potential application in sulphide removal in aquatic systems may provide a useful contribution to the treatment of acid mine drainage and other sulphidic wastewaters.
- Full Text:
- Date Issued: 2008
The Rhodes BioSURE process and the use of sustainability indicators in the development of biological mine water treatment
- Authors: Neba, Alphonsus
- Date: 2007
- Subjects: Acid mine drainage Water -- Purification -- Biological treatment Mine water Mine water -- Purification Sewage -- Purification
- Language: English
- Type: Thesis , Doctoral , PhD
- Identifier: vital:3984 , http://hdl.handle.net/10962/d1004043
- Description: Polluted waters, arising from extensive past and ongoing mining operations in South Africa, pose serious environmental threats to the limited fresh water resource. The long time periods, of decades to centuries, over which decanting mine waters may be expected to flow raises additional concerns about the sustainability of these resources. Responses to the problem have thus increasingly been directed towards the long-term sustainability of mine water treatment technologies (MWTT) as a critical indicator in both their research and development, and application. Bioprocess treatments have been considered in this regard and, among these, the Rhodes BioSURE Process has been investigated in preliminary studies using complex organic carbon wastes as the carbon source and electron donor for the central sulphate reduction unit operation. Although both the mining industry and the related statutory/regulatory authority in South Africa share public commitment to sustainability in the treatment of mine waters, no systematic mechanism has emerged to enable the application of sustainability thinking as a guiding principle in the selection and application of MWTTs, nor in the research and development undertaking. This study undertook the development of a Sustainability Indicator Framework in order to provide a systematic basis for the incorporation of sustainability objectives in MWTT bioprocess development, and specifically to use this framework as an input to the investigation of the scaleup development of the Rhodes BioSURE Process. In the development of the MWTT Sustainability Indicator Framework, an initial survey of industry thinking in this area was undertaken and, based on these outcomes, a detailed questionnaire methodology was developed in order to identify and quantify critical sustainability indicators. These included analysis of environmental, economic, social and technical indicators used in sustainability accounting practice in the industry. Statutory/regulatory sustainability targets in the same categories were derived from State of the Environment Reports (SoER) from Provincial authorities where mining is undertaken in South Africa. A synthesis of industry and SoER values was derived from weighted averages and the Sustainability Indicator Framework based on these outcomes. A Conceptual Decision-Support System, to guide the selection and development of MWTTs, was proposed and also based on these results. In the development of the Rhodes BioSURE Process the use of primary sludge (PS) had been investigated as a potential complex carbon and electron donor source. In this regard the utility operator, and sewage treatment process infrastructure, was identified as potentially meeting aspects of the sustainability objectives identified for MWTT application development. Both the Sustainability Indicator Framework and the Conceptual Decision-Support System provided inputs in the formulation of the experimental programme relating to the scale-up development of the Rhodes BioSURE Process. Based on these outcomes, a series of single- and multi-stage reactor configuration, optimisation and enzymology studies were undertaken at bench-, pilot- and technical-scale operations. These units were operated at hydraulic retention times (HRT) ranging between 22 to 72 hours and at chemical oxygen demand to sulphate ratios (COD:SO[subscript 4]) ranging between 1:1 to 2:1. Studies undertaken in fed-batch, bench-scale reactors confirmed the preliminary feasibility of using established sewage treatment infrastructure as a replacement for novel reactor configurations that had been used in the initial studies. The results further indicated that the hydrolysis of PS occurred at different rates under biosulphidogenic conditions in the different reactor configurations investigated. Scale-up of these findings in multi-stage pilot- (7.4m[superscript 3]) and technical-scale plants (680m[superscript 3]) showed comparable performances between the unit operations in terms of SO[subscript 4] and COD removal. These results indicated no apparent advantages in the uncoupling of hydrolysis and sulphate reduction in separate unit operations as had been suggested in previous studies. Scale-down/scale-up studies were undertaken in a continuously fed single-stage reactor configuration and showed that the process could be effectively operated in this way. Previous proposals that chemical and biological gradients established in the sludge bed of the Recycling Sludge Bed Reactor (RSBR) exercised an influence on the rates of substrate hydrolysis were investigated and the relative activity of α- and β-glucosidase and protease enzymes was measured. Results provided additional support for this hypothesis and it was shown that enzyme assay may also provide a useful tool in process development and monitoring studies. While sulphide recovery, following the sulphate reduction step in the BioSURE Process, was not investigated as a component of this study, the treatment of final effluent or waste spills was identified as an important sustainability requirement given the toxicity of sulphide to human and ecosystem environments. A conventional trickle filter reactor system was evaluated for this purpose and showed close to 100% oxidation to sulphate in a short contact time operating regime. Although residual COD removal was low at ~20% of influent, it is considered that high rate recycle biofilter operation could achieve the COD discharge standard of 75 mg/l. The results of the above studies provided inputs into the design, construction and commissioning of the first full-scale commercial application of the Rhodes BioSURE Process for mine wastewater treatment using sewage sludge as the carbon and electron donor source. An adjacent mine and sewage works have been linked by pipeline and an operational capacity of 10 Ml/day water treated has been established with sulphate reduced from ~1300mg/l to <200mg/l. These developments constitute a novel contribution in the mine waste water treatment field.
- Full Text:
- Date Issued: 2007