A molecular investigation of stem-galling Tetramesa Walker (Hymenoptera: Eurytomidae) on African grasses: applications to biological control
- Van Steenderen, Clarke Julian Mignon
- Authors: Van Steenderen, Clarke Julian Mignon
- Date: 2023-10-13
- Subjects: Uncatalogued
- Language: English
- Type: Academic theses , Doctoral theses , text
- Identifier: http://hdl.handle.net/10962/432565 , vital:72881 , DOI 10.21504/10962/432565
- Description: South Africa is a larger donor than receiver of alien grasses, where approximately 15% (_ 165 spp.) of the country's native grass species have become naturalised elsewhere. Many of these grasses have become serious invaders, causing significant damage to native species, habitat structure, and ecosystem functioning. Biological control is a sustainable and cost-effective method for the control of invasive weeds, but its application to invasive grasses has been approached with trepidation in the past due to the fears of a lack of host-specific herbivores that may cause non-target damage to agriculturally-important crops. The Tetramesa Walker genus (Hymenoptera: Eurytomidae) is one of three genera in the family that feed exclusively on grasses, and have a record of being host-specific to a particular species, or complex of closely-related congeners. There are over 200 described Tetramesa species, but this taxonomic effort has occurred almost exclusively in the Northern Hemisphere. Only about 2% of the described species are from Africa, with none from southern Africa despite the high diversity of grasses in the region. The low morphological variability between many Tetramesa groups has made identification difficult, where there may in fact be multiple undiscovered cryptic species. This thesis generated genetic sequence data (mitochondrial COI and nuclear 28S) that revealed at least eight native southern African Tetramesa taxa that are new to science, focusing particularly on the assemblages associated with Eragrostis curvula Nees (African lovegrass) and Sporobolus pyramidalis Beauv. and S. natalensis Steud. (giant rat's tail grass) which are alien invasive pests in Australia. Approximately 200 eurytomid wasps were collected and sequenced from 19 grass species across six South African provinces. Additionally, 27 grass species were sequenced using four gene regions (rps16-trnK, rps16, rpl32-trnL, and ITS), which were added to existing sequence data to build a dataset comprising over 700 sequences. Field host ranges and the use of host grass genetic proxies were important in making inferences about the host-specificity of eurytomid wasps of interest. Nine Tetramesa groups appeared to be host-specific to a single grass species, while six Tetramesa were associated with multiple species in a single grass genus. Since S. pyramidalis, S. natalensis, S. africanus, Hyparrhenia hirta, E. trichophora, and Andropogon gayanus are weeds elsewhere, there are at least six potential Tetramesa biological control agents that have been identified. A high diversity of Tetramesa on grasses within the Eragrostis genus was reported, with at least four taxa associated with E. curvula. It is currently uncertain whether these taxa represent different cryptic species or intraspecific populations that are the result of geographic sub-structuring. No-choice host-specificity testing using Tetramesa sp. 4 on E. curvula revealed that the wasp could complete its lifecycle on two non-target African grasses; namely E. plana and E. planiculmis. The wasp was also recorded on other Eragrostis species in the field (namely E. biflora and E. capensis). Using grass genetic sequences obtained in this study, it was found that there are four native Australian Eragrostis species that are more closely related to target E. curvula than to the non-target E. plana and E. planiculmis. This suggests that Tetramesa sp. 4 may not be suitably host-specific for use as a biological control agent. Further host-specificity testing on these native Australian species is required, however, before this insect is ruled out completely. The Tetramesa on S. pyramidalis (Tetramesa sp. 1), and the unidentified Sporobolus species presumed to be S. africanus, were suitably host-specific to be used as biological control agents. Since it was unclear whether some phylogenetic clades were true species or intraspecific populations, which is essential to understand when selecting agents for biological control, a new piece of software, SPEDE-sampler", was developed. It offers users of the Generalised Mixed Yule Coalescent (GMYC) species delimitation model a means of assessing the degree to which sampling effects such as data size and parameter choice can influence species diversity estimates. When applied to the Tetramesa data set, the software assisted in identifying which groups may contain cryptic species, uncovering that the COI marker is affected more by singletons than the 28S marker (i.e. species diversity tends to be overestimated), and confirming putative Tetramesa taxa that could be useful for biological control programmes going forward. This thesis has provided evidence that South Africa contains a diverse assemblage of Tetramesa and other eurytomids that are closely associated with their grass hosts, and that many of these taxa hold promise for grass biological control. This work has also highlighted the importance of integrative taxonomy in the discovery of novel taxa, and that biological control practitioners need to be aware of the caveats of each line of evidence used in the delimitation of putative species. , Thesis (PhD) -- Faculty of Science, Zoology and Entomology, 2023
- Full Text:
- Date Issued: 2023-10-13
- Authors: Van Steenderen, Clarke Julian Mignon
- Date: 2023-10-13
- Subjects: Uncatalogued
- Language: English
- Type: Academic theses , Doctoral theses , text
- Identifier: http://hdl.handle.net/10962/432565 , vital:72881 , DOI 10.21504/10962/432565
- Description: South Africa is a larger donor than receiver of alien grasses, where approximately 15% (_ 165 spp.) of the country's native grass species have become naturalised elsewhere. Many of these grasses have become serious invaders, causing significant damage to native species, habitat structure, and ecosystem functioning. Biological control is a sustainable and cost-effective method for the control of invasive weeds, but its application to invasive grasses has been approached with trepidation in the past due to the fears of a lack of host-specific herbivores that may cause non-target damage to agriculturally-important crops. The Tetramesa Walker genus (Hymenoptera: Eurytomidae) is one of three genera in the family that feed exclusively on grasses, and have a record of being host-specific to a particular species, or complex of closely-related congeners. There are over 200 described Tetramesa species, but this taxonomic effort has occurred almost exclusively in the Northern Hemisphere. Only about 2% of the described species are from Africa, with none from southern Africa despite the high diversity of grasses in the region. The low morphological variability between many Tetramesa groups has made identification difficult, where there may in fact be multiple undiscovered cryptic species. This thesis generated genetic sequence data (mitochondrial COI and nuclear 28S) that revealed at least eight native southern African Tetramesa taxa that are new to science, focusing particularly on the assemblages associated with Eragrostis curvula Nees (African lovegrass) and Sporobolus pyramidalis Beauv. and S. natalensis Steud. (giant rat's tail grass) which are alien invasive pests in Australia. Approximately 200 eurytomid wasps were collected and sequenced from 19 grass species across six South African provinces. Additionally, 27 grass species were sequenced using four gene regions (rps16-trnK, rps16, rpl32-trnL, and ITS), which were added to existing sequence data to build a dataset comprising over 700 sequences. Field host ranges and the use of host grass genetic proxies were important in making inferences about the host-specificity of eurytomid wasps of interest. Nine Tetramesa groups appeared to be host-specific to a single grass species, while six Tetramesa were associated with multiple species in a single grass genus. Since S. pyramidalis, S. natalensis, S. africanus, Hyparrhenia hirta, E. trichophora, and Andropogon gayanus are weeds elsewhere, there are at least six potential Tetramesa biological control agents that have been identified. A high diversity of Tetramesa on grasses within the Eragrostis genus was reported, with at least four taxa associated with E. curvula. It is currently uncertain whether these taxa represent different cryptic species or intraspecific populations that are the result of geographic sub-structuring. No-choice host-specificity testing using Tetramesa sp. 4 on E. curvula revealed that the wasp could complete its lifecycle on two non-target African grasses; namely E. plana and E. planiculmis. The wasp was also recorded on other Eragrostis species in the field (namely E. biflora and E. capensis). Using grass genetic sequences obtained in this study, it was found that there are four native Australian Eragrostis species that are more closely related to target E. curvula than to the non-target E. plana and E. planiculmis. This suggests that Tetramesa sp. 4 may not be suitably host-specific for use as a biological control agent. Further host-specificity testing on these native Australian species is required, however, before this insect is ruled out completely. The Tetramesa on S. pyramidalis (Tetramesa sp. 1), and the unidentified Sporobolus species presumed to be S. africanus, were suitably host-specific to be used as biological control agents. Since it was unclear whether some phylogenetic clades were true species or intraspecific populations, which is essential to understand when selecting agents for biological control, a new piece of software, SPEDE-sampler", was developed. It offers users of the Generalised Mixed Yule Coalescent (GMYC) species delimitation model a means of assessing the degree to which sampling effects such as data size and parameter choice can influence species diversity estimates. When applied to the Tetramesa data set, the software assisted in identifying which groups may contain cryptic species, uncovering that the COI marker is affected more by singletons than the 28S marker (i.e. species diversity tends to be overestimated), and confirming putative Tetramesa taxa that could be useful for biological control programmes going forward. This thesis has provided evidence that South Africa contains a diverse assemblage of Tetramesa and other eurytomids that are closely associated with their grass hosts, and that many of these taxa hold promise for grass biological control. This work has also highlighted the importance of integrative taxonomy in the discovery of novel taxa, and that biological control practitioners need to be aware of the caveats of each line of evidence used in the delimitation of putative species. , Thesis (PhD) -- Faculty of Science, Zoology and Entomology, 2023
- Full Text:
- Date Issued: 2023-10-13
Native-range studies on insect herbivores associated with African Lovegrass (Eragrostis curvula) in South Africa: prospects for biological control in Australia
- Authors: Yell, Liam Dougal
- Date: 2023-10-13
- Subjects: Uncatalogued
- Language: English
- Type: Academic theses , Master's theses , text
- Identifier: http://hdl.handle.net/10962/424446 , vital:72154
- Description: Eragrostis curvula (Schrad.) Nees. (African Lovegrass) is an African native species of grass that was intentionally introduced for pasture in Australia. It has since escaped cultivation and has become widespread and highly invasive. Eragrostis curvula has been recorded in every state and territory in Australia where it has altered fire regimes, disrupted nutrient cycles and can reduce livestock carrying capacity by up to 50%. The Centre for Biological Control at Rhodes University and the New South Wales Department of Primary Industries have been working in collaboration to identify and screen herbivorous insects as biological control agents for E. curvula in Australia. Native-range surveys were conducted between 2021 and 2022 on E. curvula at twenty-two sites across South Africa to identify herbivorous natural enemies associated with it. Species accumulation curves were generated to ensure adequate sampling was performed to identify all the insects associated with E. curvula. Twenty-nine non-target grass species were surveyed simultaneously to determine the field-host range of the natural enemies associated with the target weed. Herbivorous natural enemies were prioritised as possible biological control agents against E. curvula in Australia based on field-host range, predicted efficacy and climatic suitability. Four insect species were consistently found on E. curvula, two of which were herbivorous, as well as a parasitoid and a detritivore. Species accumulation curves show that the insect community was adequately sampled in South Africa. The two herbivorous insects were identified to the lowest taxonomic level using COI barcoding. Both species are undescribed phytophagous wasps in the genus Tetramesa (Hymenoptera: Eurytomidae). Because Tetramesa species have been shown to be host specific and highly damaging in previous biological control programs for other invasive grass weeds, we assessed their suitability as candidate biological control agents for use on E. curvula in Australia. Both Tetramesa species (“sp. 4” and “sp. 5”) were found on several native congeners under field conditions in South Africa. Congeneric South African-native non-target grass species were used as phylogenetic proxies to assess the risk posed to Australian native Eragrostis species. This highlighted three non-target Australian native Eragrostis species, namely: E. parviflora (R. Br.) Trin., E. leptocarpa Benth. fl., and E. trachycarpa Benth., that are at risk of being attacked by the two candidate agents based on their phylogenetic proximity to E. curvula. Predicted efficacy trials were conducted at five long-term repeat survey sites and revealed that Tetramesa sp. 4 does not reduce the probability of E. curvula tiller survival or reproduction, while Tetramesa sp. 5 does not reduce the probability of tiller reproduction but does increase the probability of tiller survival. This result was unexpected and may be a plant compensatory response to herbivory. The sites where both Tetramesa species were collected in South Africa are climatically similar to the invaded range of E. curvula in Australia, and as such, the Tetramesa spp. are likely to be suitably adapted to the climate where they would be released in Australia. These results suggest that both Tetramesa species associated with E. curvula may have too broad a host range to be used as biological control agents in Australia. However, further quarantine-based host-range assessments on Australian native Eragrostis species are recommended to confirm this. The field-based methods used in this study have reduced the number of insect and plant species that host-range assessments will be required to be performed on, thus preventing wasted resources. , Thesis (MSc) -- Faculty of Science, Zoology and Entomology, 2023
- Full Text:
- Date Issued: 2023-10-13
- Authors: Yell, Liam Dougal
- Date: 2023-10-13
- Subjects: Uncatalogued
- Language: English
- Type: Academic theses , Master's theses , text
- Identifier: http://hdl.handle.net/10962/424446 , vital:72154
- Description: Eragrostis curvula (Schrad.) Nees. (African Lovegrass) is an African native species of grass that was intentionally introduced for pasture in Australia. It has since escaped cultivation and has become widespread and highly invasive. Eragrostis curvula has been recorded in every state and territory in Australia where it has altered fire regimes, disrupted nutrient cycles and can reduce livestock carrying capacity by up to 50%. The Centre for Biological Control at Rhodes University and the New South Wales Department of Primary Industries have been working in collaboration to identify and screen herbivorous insects as biological control agents for E. curvula in Australia. Native-range surveys were conducted between 2021 and 2022 on E. curvula at twenty-two sites across South Africa to identify herbivorous natural enemies associated with it. Species accumulation curves were generated to ensure adequate sampling was performed to identify all the insects associated with E. curvula. Twenty-nine non-target grass species were surveyed simultaneously to determine the field-host range of the natural enemies associated with the target weed. Herbivorous natural enemies were prioritised as possible biological control agents against E. curvula in Australia based on field-host range, predicted efficacy and climatic suitability. Four insect species were consistently found on E. curvula, two of which were herbivorous, as well as a parasitoid and a detritivore. Species accumulation curves show that the insect community was adequately sampled in South Africa. The two herbivorous insects were identified to the lowest taxonomic level using COI barcoding. Both species are undescribed phytophagous wasps in the genus Tetramesa (Hymenoptera: Eurytomidae). Because Tetramesa species have been shown to be host specific and highly damaging in previous biological control programs for other invasive grass weeds, we assessed their suitability as candidate biological control agents for use on E. curvula in Australia. Both Tetramesa species (“sp. 4” and “sp. 5”) were found on several native congeners under field conditions in South Africa. Congeneric South African-native non-target grass species were used as phylogenetic proxies to assess the risk posed to Australian native Eragrostis species. This highlighted three non-target Australian native Eragrostis species, namely: E. parviflora (R. Br.) Trin., E. leptocarpa Benth. fl., and E. trachycarpa Benth., that are at risk of being attacked by the two candidate agents based on their phylogenetic proximity to E. curvula. Predicted efficacy trials were conducted at five long-term repeat survey sites and revealed that Tetramesa sp. 4 does not reduce the probability of E. curvula tiller survival or reproduction, while Tetramesa sp. 5 does not reduce the probability of tiller reproduction but does increase the probability of tiller survival. This result was unexpected and may be a plant compensatory response to herbivory. The sites where both Tetramesa species were collected in South Africa are climatically similar to the invaded range of E. curvula in Australia, and as such, the Tetramesa spp. are likely to be suitably adapted to the climate where they would be released in Australia. These results suggest that both Tetramesa species associated with E. curvula may have too broad a host range to be used as biological control agents in Australia. However, further quarantine-based host-range assessments on Australian native Eragrostis species are recommended to confirm this. The field-based methods used in this study have reduced the number of insect and plant species that host-range assessments will be required to be performed on, thus preventing wasted resources. , Thesis (MSc) -- Faculty of Science, Zoology and Entomology, 2023
- Full Text:
- Date Issued: 2023-10-13
- «
- ‹
- 1
- ›
- »