The development of amine-based extractants for separation of base metals in a sulfate medium
- Authors: Magwa, Nomampondo Penelope
- Date: 2015
- Subjects: Extraction (Chemistry) , Sulfates , Ligands , Benzimidazoles , Infrared spectroscopy , Nuclear magnetic resonance spectroscopy , Metal ions , Metals
- Language: English
- Type: Thesis , Doctoral , PhD
- Identifier: vital:4559 , http://hdl.handle.net/10962/d1020010
- Description: Tridentate benzimidazole-based ligands, bis((1H-benzimidazol-2-yl)methyl)sulfide (BNSN) and bis((1H-benzimidazol-2-yl)methyl)amine (BNNN), along with dinonylnaphthalene sulfonic acid (DNNSA) as a synergist, were investigated as potential selective extractants for Ni2+ from base metals in a solvent extraction system using 2-octanol/Shellsol 2325 (8:2) as diluent and modifier. However, extraction studies show a lack of pH-metric separation of the later 3d metal ions with bis((1-octylbenzimidazol-2-yl)methyl)sulfide (BONSN) and bis((1- decylbenzimidazol-2-yl)methyl)amine (BDNNN) as extractants, but extractions occurred in the low pH range with an opportunity for back extraction. This investigation suggested that tridentate ligands (at least those of the nature investigated here) are not feasible extractants for separation of base metal ions due to their lack of stereochemical “tailor-making.”
- Full Text:
- Authors: Magwa, Nomampondo Penelope
- Date: 2015
- Subjects: Extraction (Chemistry) , Sulfates , Ligands , Benzimidazoles , Infrared spectroscopy , Nuclear magnetic resonance spectroscopy , Metal ions , Metals
- Language: English
- Type: Thesis , Doctoral , PhD
- Identifier: vital:4559 , http://hdl.handle.net/10962/d1020010
- Description: Tridentate benzimidazole-based ligands, bis((1H-benzimidazol-2-yl)methyl)sulfide (BNSN) and bis((1H-benzimidazol-2-yl)methyl)amine (BNNN), along with dinonylnaphthalene sulfonic acid (DNNSA) as a synergist, were investigated as potential selective extractants for Ni2+ from base metals in a solvent extraction system using 2-octanol/Shellsol 2325 (8:2) as diluent and modifier. However, extraction studies show a lack of pH-metric separation of the later 3d metal ions with bis((1-octylbenzimidazol-2-yl)methyl)sulfide (BONSN) and bis((1- decylbenzimidazol-2-yl)methyl)amine (BDNNN) as extractants, but extractions occurred in the low pH range with an opportunity for back extraction. This investigation suggested that tridentate ligands (at least those of the nature investigated here) are not feasible extractants for separation of base metal ions due to their lack of stereochemical “tailor-making.”
- Full Text:
Development of styrene based imprinted sorbents for selective clean-up of metalloporphyrins in organic media
- Authors: Awokoya, Kehinde Nurudeen
- Date: 2014
- Language: English
- Type: text , Thesis , Doctoral , PhD
- Identifier: http://hdl.handle.net/10962/54521 , vital:26580
- Description: Most crude oils contain traces of vanadium and nickel complex with porphyrins (VTPP and NTPP) within their asphaltene fraction. Although these metals are only present in trace quantities, they have a significant and detrimental impact on the refining process by degrading the quality of intermediate and end products. Therefore, their selective removal is highly desirable. This thesis presents the development of nickel porphyrin, nickel vanadyl porphyrin imprinted nanofibers and vanadyl porphyrin imprinted polymer (MIP) particles for application as selective sorbents. Computational model based on the combination of molecular dynamics simulations and quantum mechanics was successfully applied to the styrene functional monomer selection. The particle was prepared by bulk polymerization and the nanofibers by a novel approach combining molecular imprinting and electrospinning technology. The morphologies, thermal stabilities and porosities of the imprinted sorbents were studied using SEM, TGA, and BET nitrogen gas adsorption. Chloroform was found to swell the polymer particles to a higher degree than methanol and acetonitrile. The adsorption characteristics of the imprinted sorbents best fitted with Freundlich isotherm model. The imprinted sorbents recorded high extraction efficiencies (EEs) of > 99 % in selectively extracting the metalloporphyrins. The impact of the template on the affinity of recognition for NTPP was evaluated. The results showed that the NTPP adsorption capacity increased as the molar ratio of NTPP to styrene was increased from 1:1 to 3:1. The optimal ratio of template to functional monomer which yielded the best specific affinity and highest recovery (99.9 %) was 3:1. The effects of trifluoroacetic acid (TFA), dichloromethane (DCM), dimethyl sulphoxide (DMSO), pentane (PEN) on electro-spinnability of the polymer solutions and the morphological appearance of the nanofibers were investigated. The imprinted nanofibers exhibited the same selectivity specialism for both NTPP and VTPP. A remarkable stability in relation to reusability was observed when imprinted nanofibers were used, as they could be reused nine times without incurring any significant loss in removal efficiency. The results were validated by analysing a certified reference material. The imprinted sorbents were therefore found to be selective sorbents that are well suited for handling trace metals in organic media.
- Full Text:
- Authors: Awokoya, Kehinde Nurudeen
- Date: 2014
- Language: English
- Type: text , Thesis , Doctoral , PhD
- Identifier: http://hdl.handle.net/10962/54521 , vital:26580
- Description: Most crude oils contain traces of vanadium and nickel complex with porphyrins (VTPP and NTPP) within their asphaltene fraction. Although these metals are only present in trace quantities, they have a significant and detrimental impact on the refining process by degrading the quality of intermediate and end products. Therefore, their selective removal is highly desirable. This thesis presents the development of nickel porphyrin, nickel vanadyl porphyrin imprinted nanofibers and vanadyl porphyrin imprinted polymer (MIP) particles for application as selective sorbents. Computational model based on the combination of molecular dynamics simulations and quantum mechanics was successfully applied to the styrene functional monomer selection. The particle was prepared by bulk polymerization and the nanofibers by a novel approach combining molecular imprinting and electrospinning technology. The morphologies, thermal stabilities and porosities of the imprinted sorbents were studied using SEM, TGA, and BET nitrogen gas adsorption. Chloroform was found to swell the polymer particles to a higher degree than methanol and acetonitrile. The adsorption characteristics of the imprinted sorbents best fitted with Freundlich isotherm model. The imprinted sorbents recorded high extraction efficiencies (EEs) of > 99 % in selectively extracting the metalloporphyrins. The impact of the template on the affinity of recognition for NTPP was evaluated. The results showed that the NTPP adsorption capacity increased as the molar ratio of NTPP to styrene was increased from 1:1 to 3:1. The optimal ratio of template to functional monomer which yielded the best specific affinity and highest recovery (99.9 %) was 3:1. The effects of trifluoroacetic acid (TFA), dichloromethane (DCM), dimethyl sulphoxide (DMSO), pentane (PEN) on electro-spinnability of the polymer solutions and the morphological appearance of the nanofibers were investigated. The imprinted nanofibers exhibited the same selectivity specialism for both NTPP and VTPP. A remarkable stability in relation to reusability was observed when imprinted nanofibers were used, as they could be reused nine times without incurring any significant loss in removal efficiency. The results were validated by analysing a certified reference material. The imprinted sorbents were therefore found to be selective sorbents that are well suited for handling trace metals in organic media.
- Full Text:
The development of functionalized electrospun nanofibers for the control of pathogenic microorganisms in water.
- Authors: Kleyi, Phumelele Eldridge
- Date: 2014
- Subjects: Electrospinning , Nanofibers , Pathogenic microorganisms , Pathogenic microorganisms -- Detection , Drinking water -- Microbiology , Water quality -- Measurement , Imidazoles , Spectrum analysis , Anti-infective agents , Polymerization
- Language: English
- Type: Thesis , Doctoral , PhD
- Identifier: vital:4497 , http://hdl.handle.net/10962/d1013134
- Description: The thesis presents the development of functionalized electrospun nylon 6 nanofibers for the eradication of pathogenic microorganisms in drinking water. Imidazole derivatives were synthesized as the antimicrobial agents and were characterized by means of NMR spectroscopy, IR spectroscopy, elemental analysis and X-ray crystallography. The first set of compounds (2-substituted N-alkylimidazoles) consisted of imidazole derivatives substituted with different alkyl groups (methyl, ethyl, propyl, butyl, heptyl, octyl, decyl and benzyl) at the 1-position and various functional groups [carboxaldehyde (CHO), alcohol (CH2OH) and carboxylic acid (COOH)] at the 2-position. It was observed that the antimicrobial activity of the compounds increased with increasing alkyl chain length and decreasing pKa of the 2-substituent. It was also observed that the antimicrobial activity was predominantly against a Gram-positive bacterial strains [Staphylococcus aureus (MIC = 5-160 μg/mL) and Bacillus subtilis subsp. spizizenii (MIC = 5-20 μg/mL)], with the latter being the more susceptible. However, the compounds displayed poor antimicrobial activity against Gram-negative bacterial strain, E. coli (MIC = 150- >2500 μg/mL) and did not show any activity against the yeast, C. albicans. The second set of compounds consisted of the silver(I) complexes containing 2-hydroxymethyl-N-alkylimidazoles. The complexes displayed a broad spectrum antimicrobial activity towards the microorganisms that were tested and their activity [E. coli (MIC = 5-40 μg/mL), S. aureus (MIC = 20-80 μg/mL), Bacillus subtilis subsp. spizizenii (MIC = 5-40 μg/mL) and C. albicans (MIC = 40-80 μg/mL)] increased with the alkyl chain length of the 2-hydroxymethyl-N-alkylimidazole. The third set of compounds consisted of the vinylimidazoles containing the vinyl group either at the 1-position or at the 4- or 5- position. The imidazoles with the vinyl group at the 4- or 5-position contained the alkyl group (decyl) at the 1-position. For the fabrication of the antimicrobial nanofibers, the first two sets of imidazole derivatives (2-substituted N-alkylimidazoles and silver(I) complexes) were incorporated into electrospun nylon 6 nanofibers while the third set (2-substituted vinylimidazoles) was immobilized onto electrospun nylon 6 nanofibers employing the graft polymerization method. The antimicrobial nylon nanofibers were characterized by IR spectroscopy and SEM-EDAX (EDS). The electrospun nylon 6 nanofibers incorporated with 2-substituted N-alkylimidazoles displayed moderate to excellent levels of growth reduction against S. aureus (73.2-99.8 percent). For the electrospun nylon 6 nanofibers incorporated with silver(I) complexes, the levels of growth reduction were >99.99 percent, after the antimicrobial activity evaluation using the shake flask method. Furthermore, the grafted electrospun nylon 6 nanofibers showed excellent levels of growth reduction for E. coli (99.94-99.99 percent) and S. aureus (99.93-99.99 percent). The reusability results indicated that the grafted electrospun nylon 6 nanofibers maintained the antibacterial activity until the third cycle of useage. The cytotoxicity studies showed that grafted electrospun nylon 6 nanofibers possess lower cytotoxic effects on Chang liver cells with IC50 values in the range 23.48-26.81 μg/mL. The thesis demonstrated that the development of antimicrobial electrospun nanofibers, with potential for the eradication of pathogenic microoganisms in water, could be accomplished by incorporation as well as immobilization strategies.
- Full Text:
- Authors: Kleyi, Phumelele Eldridge
- Date: 2014
- Subjects: Electrospinning , Nanofibers , Pathogenic microorganisms , Pathogenic microorganisms -- Detection , Drinking water -- Microbiology , Water quality -- Measurement , Imidazoles , Spectrum analysis , Anti-infective agents , Polymerization
- Language: English
- Type: Thesis , Doctoral , PhD
- Identifier: vital:4497 , http://hdl.handle.net/10962/d1013134
- Description: The thesis presents the development of functionalized electrospun nylon 6 nanofibers for the eradication of pathogenic microorganisms in drinking water. Imidazole derivatives were synthesized as the antimicrobial agents and were characterized by means of NMR spectroscopy, IR spectroscopy, elemental analysis and X-ray crystallography. The first set of compounds (2-substituted N-alkylimidazoles) consisted of imidazole derivatives substituted with different alkyl groups (methyl, ethyl, propyl, butyl, heptyl, octyl, decyl and benzyl) at the 1-position and various functional groups [carboxaldehyde (CHO), alcohol (CH2OH) and carboxylic acid (COOH)] at the 2-position. It was observed that the antimicrobial activity of the compounds increased with increasing alkyl chain length and decreasing pKa of the 2-substituent. It was also observed that the antimicrobial activity was predominantly against a Gram-positive bacterial strains [Staphylococcus aureus (MIC = 5-160 μg/mL) and Bacillus subtilis subsp. spizizenii (MIC = 5-20 μg/mL)], with the latter being the more susceptible. However, the compounds displayed poor antimicrobial activity against Gram-negative bacterial strain, E. coli (MIC = 150- >2500 μg/mL) and did not show any activity against the yeast, C. albicans. The second set of compounds consisted of the silver(I) complexes containing 2-hydroxymethyl-N-alkylimidazoles. The complexes displayed a broad spectrum antimicrobial activity towards the microorganisms that were tested and their activity [E. coli (MIC = 5-40 μg/mL), S. aureus (MIC = 20-80 μg/mL), Bacillus subtilis subsp. spizizenii (MIC = 5-40 μg/mL) and C. albicans (MIC = 40-80 μg/mL)] increased with the alkyl chain length of the 2-hydroxymethyl-N-alkylimidazole. The third set of compounds consisted of the vinylimidazoles containing the vinyl group either at the 1-position or at the 4- or 5- position. The imidazoles with the vinyl group at the 4- or 5-position contained the alkyl group (decyl) at the 1-position. For the fabrication of the antimicrobial nanofibers, the first two sets of imidazole derivatives (2-substituted N-alkylimidazoles and silver(I) complexes) were incorporated into electrospun nylon 6 nanofibers while the third set (2-substituted vinylimidazoles) was immobilized onto electrospun nylon 6 nanofibers employing the graft polymerization method. The antimicrobial nylon nanofibers were characterized by IR spectroscopy and SEM-EDAX (EDS). The electrospun nylon 6 nanofibers incorporated with 2-substituted N-alkylimidazoles displayed moderate to excellent levels of growth reduction against S. aureus (73.2-99.8 percent). For the electrospun nylon 6 nanofibers incorporated with silver(I) complexes, the levels of growth reduction were >99.99 percent, after the antimicrobial activity evaluation using the shake flask method. Furthermore, the grafted electrospun nylon 6 nanofibers showed excellent levels of growth reduction for E. coli (99.94-99.99 percent) and S. aureus (99.93-99.99 percent). The reusability results indicated that the grafted electrospun nylon 6 nanofibers maintained the antibacterial activity until the third cycle of useage. The cytotoxicity studies showed that grafted electrospun nylon 6 nanofibers possess lower cytotoxic effects on Chang liver cells with IC50 values in the range 23.48-26.81 μg/mL. The thesis demonstrated that the development of antimicrobial electrospun nanofibers, with potential for the eradication of pathogenic microoganisms in water, could be accomplished by incorporation as well as immobilization strategies.
- Full Text:
An investigation into the antidiabetic and catalytic properties of oxovanadium(IV) complexes
- Authors: Walmsley, Ryan Steven
- Date: 2012
- Subjects: Hypoglycemic agents Ligands (Biochemistry) Complex compounds Potentiometry Proton transfer reactions Stability Imidazoles Vanadium catalysts
- Language: English
- Type: Thesis , Doctoral , PhD
- Identifier: vital:4320 , http://hdl.handle.net/10962/d1004978
- Description: In part 1 of this thesis, the antidiabetic activity of a series of novel oxovanadium(IV) complexes was investigated. A range of bidentate N,O-donor ligands, which partially mimic naturally occurring bioligands, were prepared and reacted with the vanadyl ion to form the corresponding bis-coordinated complexes. Initially, 2-(2ˊ-hydroxyphenyl)-1R-imidazoline (where R = H, ethyl and ethanol) ligands were prepared. The aqueous pH-metric chemical speciation was investigated using glass electrode potentiometry which allowed for the determination of protonation and stability constants of the ligands and complexes, respectively. The species distribution diagrams generated from this information gave an indication of how the complexes might behave across the broad pH range experienced in the digestive and circulatory systems. This information was used to create an improved 2nd generation of ligands that were constructed by combining the imidazole and carboxylic acid functionalities. These corresponding bis[(imidazolyl)carboxylato]-oxovanadium(IV) complexes displayed a broader pH-metric stability. Both sets of complexes improved glucose uptake and reduced coagulation in vitro. In part 2 of this thesis, a range of homogeneous and heterogeneous oxovanadium(IV) catalysts were prepared. Firstly, Merrifield beads were functionalized with ligands from Part 1 and then reacted with vanadyl sulfate to afford the corresponding heterogeneous catalysts. These displayed promising catalytic activity for the peroxide facilitated oxidation of thioanisole, styrene and ethylbenzene as well as the oxidative bromination of phenol red. Smaller imidazole-containing beads with higher surface areas than the Merrifield beads were prepared by suspension polymerization. These beads similarly demonstrated excellent catalytic activity for the oxidation of thioanisole and were highly recyclable. In attempt to increase the exposed catalytic surface area, while retaining the ease of separation achieved in the before mentioned systems, micron to nano sized electrospun fibers containing coordinating ligands were fabricated. The corresponding oxovanadium(IV) functionalized fibers were applied to the oxidation of thioanisole using a continuous flow system. The flexible and porous nature of the fiber mats was well suited to this approach. After optimization of the reactant flow rate and catalyst amount, near quantitative (> 99%) oxidation was achieved for an extended period. In addition, leaching of vanadium was mitigated by modification of the attached ligand or polymer material.
- Full Text:
- Authors: Walmsley, Ryan Steven
- Date: 2012
- Subjects: Hypoglycemic agents Ligands (Biochemistry) Complex compounds Potentiometry Proton transfer reactions Stability Imidazoles Vanadium catalysts
- Language: English
- Type: Thesis , Doctoral , PhD
- Identifier: vital:4320 , http://hdl.handle.net/10962/d1004978
- Description: In part 1 of this thesis, the antidiabetic activity of a series of novel oxovanadium(IV) complexes was investigated. A range of bidentate N,O-donor ligands, which partially mimic naturally occurring bioligands, were prepared and reacted with the vanadyl ion to form the corresponding bis-coordinated complexes. Initially, 2-(2ˊ-hydroxyphenyl)-1R-imidazoline (where R = H, ethyl and ethanol) ligands were prepared. The aqueous pH-metric chemical speciation was investigated using glass electrode potentiometry which allowed for the determination of protonation and stability constants of the ligands and complexes, respectively. The species distribution diagrams generated from this information gave an indication of how the complexes might behave across the broad pH range experienced in the digestive and circulatory systems. This information was used to create an improved 2nd generation of ligands that were constructed by combining the imidazole and carboxylic acid functionalities. These corresponding bis[(imidazolyl)carboxylato]-oxovanadium(IV) complexes displayed a broader pH-metric stability. Both sets of complexes improved glucose uptake and reduced coagulation in vitro. In part 2 of this thesis, a range of homogeneous and heterogeneous oxovanadium(IV) catalysts were prepared. Firstly, Merrifield beads were functionalized with ligands from Part 1 and then reacted with vanadyl sulfate to afford the corresponding heterogeneous catalysts. These displayed promising catalytic activity for the peroxide facilitated oxidation of thioanisole, styrene and ethylbenzene as well as the oxidative bromination of phenol red. Smaller imidazole-containing beads with higher surface areas than the Merrifield beads were prepared by suspension polymerization. These beads similarly demonstrated excellent catalytic activity for the oxidation of thioanisole and were highly recyclable. In attempt to increase the exposed catalytic surface area, while retaining the ease of separation achieved in the before mentioned systems, micron to nano sized electrospun fibers containing coordinating ligands were fabricated. The corresponding oxovanadium(IV) functionalized fibers were applied to the oxidation of thioanisole using a continuous flow system. The flexible and porous nature of the fiber mats was well suited to this approach. After optimization of the reactant flow rate and catalyst amount, near quantitative (> 99%) oxidation was achieved for an extended period. In addition, leaching of vanadium was mitigated by modification of the attached ligand or polymer material.
- Full Text:
- «
- ‹
- 1
- ›
- »