Development and assessment of sustained release stavudine loaded microparticles
- Authors: Zindove, Chiedza Cathrine
- Date: 2014
- Language: English
- Type: text , Thesis , Masters , MPharm
- Identifier: http://hdl.handle.net/10962/54722 , vital:26603
- Description:
Stavudine (D4T) has been used as first line treatment for HIV/AIDS and is part of highly active anti retroviral treatment (HAART). It is an affordable medicine and its use is beneficial in resource limited settings. However D4T exhibits dose dependent side effects that may lead to non-adherence in patients. This study was undertaken to formulate, develop and manufacture a dosage form that could reduce dose dependent side effects by decreasing the dose of D4T but still exhibit antiretroviral (ARV) activity. The use of sustained release (SR) formulations of D4T that ensure constant levels of the D4T in the body would not only optimize therapy but also reduce the incidence of side effects thereby increasing patient adherence. SR microparticles containing 30mg D4T were manufactured and loaded into size 3 hard gelatine capsules prior to analysis. The D4T microparticles were manufactured by microencapsulation using non-aqueous oil-in-oil solvent evaporation approach. D4T-excipient, excipient-excipient interactions and D4T purity were assessed using Infrared Spectroscopy (IR), Differential Scanning Calorimetry (DSC) and Thermogravimetric Analysis (TGA). Copolymers synthesized from acrylic and methacrylic acid esters viz., Eudragit® RSPO and S100 were used as rate retardant materials and the effect of microcrystalline cellulose (Avicel® PH102) on the microparticles was also investigated. Magnesium stearate was used as a droplet stabilizer and n-hexane was added to harden the microspheres formed in a liquid paraffin continuous phase. The microparticles were optimized using a Box Behnken design and Response Surface Methodology (RSM). The microparticles were characterized in terms of their flow properties and encapsulation efficiency (% EE), in addition to visualization of the surface morphology with Scanning Electron Microscopy. In vitro D4T release studies were performed using USP Apparatus III in media of different pH and the samples were analysed using a validated High Performance Liquid Chromatographic (HPLC) method with ultraviolet (UV) detection that had been developed and optimized using a Central Composite Design (CCD). The method was validated according to ICH guidelines. The IR spectra and DSC thermographs revealed that D4T exhibited thermal stability and there was no evidence of D4T-excipient and excipient-excipient interactions. The microparticles that were produced were white, free flowing and were obtained in a high yield with high encapsulation efficiency. Scanning Electron Microscopy studies revealed that the microparticles were spherical and porous in nature. In vitro D4T release extended to 12 hours and the mechanism of release was established using model dependent methods by fitting the data to a Zero order, First order, Higuchi and Hixson Crowell model. It was observed that the mechanism of D4T release was diffusion-controlled and that the data was best fitted to the Higuchi model with correlation coefficients > 0.9. The release mechanism was confirmed using the Korsmeyer-Peppas model that revealed that most of the formulations exhibited anomalous transport kinetics with the release exponent, n, ranging from 0.5
- Full Text:
- Date Issued: 2014
- Authors: Zindove, Chiedza Cathrine
- Date: 2014
- Language: English
- Type: text , Thesis , Masters , MPharm
- Identifier: http://hdl.handle.net/10962/54722 , vital:26603
- Description:
Stavudine (D4T) has been used as first line treatment for HIV/AIDS and is part of highly active anti retroviral treatment (HAART). It is an affordable medicine and its use is beneficial in resource limited settings. However D4T exhibits dose dependent side effects that may lead to non-adherence in patients. This study was undertaken to formulate, develop and manufacture a dosage form that could reduce dose dependent side effects by decreasing the dose of D4T but still exhibit antiretroviral (ARV) activity. The use of sustained release (SR) formulations of D4T that ensure constant levels of the D4T in the body would not only optimize therapy but also reduce the incidence of side effects thereby increasing patient adherence. SR microparticles containing 30mg D4T were manufactured and loaded into size 3 hard gelatine capsules prior to analysis. The D4T microparticles were manufactured by microencapsulation using non-aqueous oil-in-oil solvent evaporation approach. D4T-excipient, excipient-excipient interactions and D4T purity were assessed using Infrared Spectroscopy (IR), Differential Scanning Calorimetry (DSC) and Thermogravimetric Analysis (TGA). Copolymers synthesized from acrylic and methacrylic acid esters viz., Eudragit® RSPO and S100 were used as rate retardant materials and the effect of microcrystalline cellulose (Avicel® PH102) on the microparticles was also investigated. Magnesium stearate was used as a droplet stabilizer and n-hexane was added to harden the microspheres formed in a liquid paraffin continuous phase. The microparticles were optimized using a Box Behnken design and Response Surface Methodology (RSM). The microparticles were characterized in terms of their flow properties and encapsulation efficiency (% EE), in addition to visualization of the surface morphology with Scanning Electron Microscopy. In vitro D4T release studies were performed using USP Apparatus III in media of different pH and the samples were analysed using a validated High Performance Liquid Chromatographic (HPLC) method with ultraviolet (UV) detection that had been developed and optimized using a Central Composite Design (CCD). The method was validated according to ICH guidelines. The IR spectra and DSC thermographs revealed that D4T exhibited thermal stability and there was no evidence of D4T-excipient and excipient-excipient interactions. The microparticles that were produced were white, free flowing and were obtained in a high yield with high encapsulation efficiency. Scanning Electron Microscopy studies revealed that the microparticles were spherical and porous in nature. In vitro D4T release extended to 12 hours and the mechanism of release was established using model dependent methods by fitting the data to a Zero order, First order, Higuchi and Hixson Crowell model. It was observed that the mechanism of D4T release was diffusion-controlled and that the data was best fitted to the Higuchi model with correlation coefficients > 0.9. The release mechanism was confirmed using the Korsmeyer-Peppas model that revealed that most of the formulations exhibited anomalous transport kinetics with the release exponent, n, ranging from 0.5
- Full Text:
- Date Issued: 2014
Formulation, development and assessment of efavirenz-loaded lipid nanocarriers
- Authors: Makoni, Pedzisai Anotida
- Date: 2014
- Subjects: Nanomedicine , Drug delivery systems , Antiretroviral agents Psychotropic effects , AIDS dementia complex
- Language: English
- Type: Master's theses , text
- Identifier: http://hdl.handle.net/10962/209981 , vital:47448
- Description: The feasibility of incorporating efavirenz (EFV) into innovative solid lipid nanoparticles (SLN) and nanostructured lipid carriers (NLC) using the hot high-pressure homogenization (HHPH) technique was investigated in an attempt to address the shortcomings in therapy associated with the use of conventional dosage forms. The shortcomings include the unpalatable taste of API in solution, instability in the presence of light when in solution and psychiatric side effects of the API. In particular, sustained release approaches may reduce or limit the incidence of adverse psychiatric effects of EFV and alleviate Acquired Immune Deficiency Syndrome (AIDS)-related complications such as AIDS Dementia Complex (ADC) in patients, ultimately improving their quality of life. Prior to initiating pre-formulation, formulation development and optimization studies of EFV-loaded SLN and/or NLC, Response Surface Methodology (RSM) in conjunction with central composite design (CCD), was used to develop and validate suitable methods for the quantitative determination of EFV in pharmaceutical formulations and for monitoring EFV release from SLN and/or NLC in vitro. Simple, accurate, precise, sensitive and stabilityindicating reversed phase-high performance liquid chromatography (RP-HPLC) methods with UV and electrochemical (EC) detection were developed, validated and optimized for in vitro analysis of EFV in formulations. On the basis of risk-to-benefit ratio the RP-HPLC method with UV detection was selected as the most suitable for the quantitative determination of EFV in pharmaceutical formulations, and was applied to in vitro release studies of EFV from SLN and/or NLC. Pre-formulation studies were undertaken to investigate the thermal stability of EFV so as to facilitate the selection of lipid excipients for the manufacture of nanocarriers, and to establish their compatibility with EFV. It was found that EFV was thermostable up to a temperature of approximately 200°C, indicating that HHPH could be used for the manufacture of EFV-loaded SLN and/or NLC. Lipid screening revealed that EFV is highly soluble in solid and liquid lipids, with glyceryl monostearate and Transcutol® HP showing the best solubilizing potential for EFV. Glyceryl monostearate exists in a stable β-modification prior to exposure to heat, but exists in the α-polymorphic modification following exposure to heat. It was established that the addition of Transcutol® HP to glyceryl monostearate revealed the co-existence of the α- and β’-polymorphic modifications, thereby revealing the existence of the modifications in NLC produced from the optimum lipid combination. Furthermore, an investigation of binary mixtures of EFV/glyceryl monostearate and glyceryl monostearate/Transcutol® HP, in addition to eutectic mixtures of EFV, glyceryl monostearate and Transcutol® HP, revealed no interaction between EFV and the lipids selected for the production of the nanocarriers. Due to the significantly higher solubility of EFV in Transcutol® HP than in to glyceryl monostearate, NLC are most likely to have a higher LC and EE than SLN. In addition, the existence of both the α- and β’-polymorphic modifications in the binary mixture of the lipid implies that EFV expulsion on prolonged storage is unlikely to occur from NLC when compared to SLN. Consequently formulation development and optimization studies of SLN and NLC were performed to investigate the potential to deliver EFV from a novel technology with an appropriate LC and EE for EFV. Tween®80 was selected for use in these formulations as the use of this surfactant facilitates the targeting of nanocarriers to the CNS. RSM in conjunction with a Box-Behnken Design (BBD) was used to establish the effects of process variables, such as number of homogenization cycles and pressure, in addition to formulation variables such as amount of EFV and Tween®80 on the particle size (PS), polydispersity index (PDI), zeta potential (ZP), visual assessment (VA) and release rate (RR) of EFV after 24 hours. In addition the LC and EE, degree of crystallinity and lipid modification, shape and surface morphology of the optimized batches were investigated to ensure that EFV-loaded SLN and NLC of desirable quality were produced. On the day of manufacture the mean PS and PDI of EFV-loaded SLN was 59.00 ± 23.16 nm and 0.382 ± 0.054 respectively. The mean PS and PDI of EFV-loaded NLC was 34.73 ± 0.7709 nm and 0.394 ± 0.027 respectively. The formulations were in the nanometer range and exhibited a narrow particle size distribution, as indicated by the PDI values. The ZP values for optimized SLN and NLC generated on the day of manufacture using HPLC grade water as the dispersion medium were -32.5 ± 4.99 mV and -22.4 ± 3.72 mV respectively. In addition the optimized batches of SLN and NLC revealed a decrease in crystallinity in comparison to bulk lipid material. DSC, WAXS and FT-IR revealed that EFV was molecularly dispersed in the nanocarriers. In addition EFV-loaded SLN existed in a single α-polymorphic form, whereas EFV-loaded NLC exhibited the co-existence of α- and β’-polymorphic forms. Generally SLN and NLC were spherically shaped when viewed under transmission electron microscopy (TEM) and scanning electron microscopy (SEM). On the day of manufacture the EE and LC of EFVloaded SLN was found to be 96.77 ± 0.453 % and 9.68 ± 1.772 % respectively. The EE and LC of EFV-loaded NLC was 99.93 ± 0.413 and 9.995 ± 0.672 respectively. The release profiles for the optimized formulations of SLN and NLC exhibited an initial burst release over the first 0-3 hours of testing, after which the release was sustained for up to 24 hours. The cumulative % EFV released over 24 hours was higher from SLN (91.5±3.423 %) than that observed for NLC (73.6±4.34 %). Stability studies performed for 8 weeks on the optimized batches of the SLN and the NLC were also conducted so as to ensure product quality. The formulations were assessed in terms of parameters considered benchmarks of stability, and included ZP, PS, PDI, LC and EE. Generally these parameters remained unchanged following storage for 8 weeks at 25°C/60% RH but showed considerable changes following storage for 8 weeks at 40°C/75% RH. These studies reveal that SLN and NLC when stored at 25°C/60% RH have the potential to be used as colloidal delivery systems for EFV that have the potential to protect EFV from photodegradation and sustain release into brain tissue. The latter will ultimately reduce or limit the incidence of adverse psychiatric effects and potentially alleviate AIDS-related complications such as ADC in patients with HIV/AIDS, ultimately improving their quality of life. , Thesis (MSc) -- Faculty of Pharmacy, Pharmacy, 2014
- Full Text:
- Date Issued: 2014
- Authors: Makoni, Pedzisai Anotida
- Date: 2014
- Subjects: Nanomedicine , Drug delivery systems , Antiretroviral agents Psychotropic effects , AIDS dementia complex
- Language: English
- Type: Master's theses , text
- Identifier: http://hdl.handle.net/10962/209981 , vital:47448
- Description: The feasibility of incorporating efavirenz (EFV) into innovative solid lipid nanoparticles (SLN) and nanostructured lipid carriers (NLC) using the hot high-pressure homogenization (HHPH) technique was investigated in an attempt to address the shortcomings in therapy associated with the use of conventional dosage forms. The shortcomings include the unpalatable taste of API in solution, instability in the presence of light when in solution and psychiatric side effects of the API. In particular, sustained release approaches may reduce or limit the incidence of adverse psychiatric effects of EFV and alleviate Acquired Immune Deficiency Syndrome (AIDS)-related complications such as AIDS Dementia Complex (ADC) in patients, ultimately improving their quality of life. Prior to initiating pre-formulation, formulation development and optimization studies of EFV-loaded SLN and/or NLC, Response Surface Methodology (RSM) in conjunction with central composite design (CCD), was used to develop and validate suitable methods for the quantitative determination of EFV in pharmaceutical formulations and for monitoring EFV release from SLN and/or NLC in vitro. Simple, accurate, precise, sensitive and stabilityindicating reversed phase-high performance liquid chromatography (RP-HPLC) methods with UV and electrochemical (EC) detection were developed, validated and optimized for in vitro analysis of EFV in formulations. On the basis of risk-to-benefit ratio the RP-HPLC method with UV detection was selected as the most suitable for the quantitative determination of EFV in pharmaceutical formulations, and was applied to in vitro release studies of EFV from SLN and/or NLC. Pre-formulation studies were undertaken to investigate the thermal stability of EFV so as to facilitate the selection of lipid excipients for the manufacture of nanocarriers, and to establish their compatibility with EFV. It was found that EFV was thermostable up to a temperature of approximately 200°C, indicating that HHPH could be used for the manufacture of EFV-loaded SLN and/or NLC. Lipid screening revealed that EFV is highly soluble in solid and liquid lipids, with glyceryl monostearate and Transcutol® HP showing the best solubilizing potential for EFV. Glyceryl monostearate exists in a stable β-modification prior to exposure to heat, but exists in the α-polymorphic modification following exposure to heat. It was established that the addition of Transcutol® HP to glyceryl monostearate revealed the co-existence of the α- and β’-polymorphic modifications, thereby revealing the existence of the modifications in NLC produced from the optimum lipid combination. Furthermore, an investigation of binary mixtures of EFV/glyceryl monostearate and glyceryl monostearate/Transcutol® HP, in addition to eutectic mixtures of EFV, glyceryl monostearate and Transcutol® HP, revealed no interaction between EFV and the lipids selected for the production of the nanocarriers. Due to the significantly higher solubility of EFV in Transcutol® HP than in to glyceryl monostearate, NLC are most likely to have a higher LC and EE than SLN. In addition, the existence of both the α- and β’-polymorphic modifications in the binary mixture of the lipid implies that EFV expulsion on prolonged storage is unlikely to occur from NLC when compared to SLN. Consequently formulation development and optimization studies of SLN and NLC were performed to investigate the potential to deliver EFV from a novel technology with an appropriate LC and EE for EFV. Tween®80 was selected for use in these formulations as the use of this surfactant facilitates the targeting of nanocarriers to the CNS. RSM in conjunction with a Box-Behnken Design (BBD) was used to establish the effects of process variables, such as number of homogenization cycles and pressure, in addition to formulation variables such as amount of EFV and Tween®80 on the particle size (PS), polydispersity index (PDI), zeta potential (ZP), visual assessment (VA) and release rate (RR) of EFV after 24 hours. In addition the LC and EE, degree of crystallinity and lipid modification, shape and surface morphology of the optimized batches were investigated to ensure that EFV-loaded SLN and NLC of desirable quality were produced. On the day of manufacture the mean PS and PDI of EFV-loaded SLN was 59.00 ± 23.16 nm and 0.382 ± 0.054 respectively. The mean PS and PDI of EFV-loaded NLC was 34.73 ± 0.7709 nm and 0.394 ± 0.027 respectively. The formulations were in the nanometer range and exhibited a narrow particle size distribution, as indicated by the PDI values. The ZP values for optimized SLN and NLC generated on the day of manufacture using HPLC grade water as the dispersion medium were -32.5 ± 4.99 mV and -22.4 ± 3.72 mV respectively. In addition the optimized batches of SLN and NLC revealed a decrease in crystallinity in comparison to bulk lipid material. DSC, WAXS and FT-IR revealed that EFV was molecularly dispersed in the nanocarriers. In addition EFV-loaded SLN existed in a single α-polymorphic form, whereas EFV-loaded NLC exhibited the co-existence of α- and β’-polymorphic forms. Generally SLN and NLC were spherically shaped when viewed under transmission electron microscopy (TEM) and scanning electron microscopy (SEM). On the day of manufacture the EE and LC of EFVloaded SLN was found to be 96.77 ± 0.453 % and 9.68 ± 1.772 % respectively. The EE and LC of EFV-loaded NLC was 99.93 ± 0.413 and 9.995 ± 0.672 respectively. The release profiles for the optimized formulations of SLN and NLC exhibited an initial burst release over the first 0-3 hours of testing, after which the release was sustained for up to 24 hours. The cumulative % EFV released over 24 hours was higher from SLN (91.5±3.423 %) than that observed for NLC (73.6±4.34 %). Stability studies performed for 8 weeks on the optimized batches of the SLN and the NLC were also conducted so as to ensure product quality. The formulations were assessed in terms of parameters considered benchmarks of stability, and included ZP, PS, PDI, LC and EE. Generally these parameters remained unchanged following storage for 8 weeks at 25°C/60% RH but showed considerable changes following storage for 8 weeks at 40°C/75% RH. These studies reveal that SLN and NLC when stored at 25°C/60% RH have the potential to be used as colloidal delivery systems for EFV that have the potential to protect EFV from photodegradation and sustain release into brain tissue. The latter will ultimately reduce or limit the incidence of adverse psychiatric effects and potentially alleviate AIDS-related complications such as ADC in patients with HIV/AIDS, ultimately improving their quality of life. , Thesis (MSc) -- Faculty of Pharmacy, Pharmacy, 2014
- Full Text:
- Date Issued: 2014
- «
- ‹
- 1
- ›
- »