Synthesis, characterisation and spectroscopic studies of diazine-N-oxide complexes of iron(II) towards the development of sensors
- Authors: Mpiti, Unako Bongani
- Date: 2019
- Subjects: Diazines , Ligands , Iron
- Language: English
- Type: text , Thesis , Masters , MSc
- Identifier: http://hdl.handle.net/10962/94753 , vital:31075
- Description: The characteristic magnetic and spectroscopic features associated with the red monomeric or dimeric, and polymeric pyrazine-N-oxide (PyzNO) iron(II) perchlorate complexes; Fen(μ1,1-pyzNO)2n-2(pyzNO)3n+2(ClO4)2n (n = {1, 2}*, and the novel compound {Fe(μ-pyzNO-κN,κO)n-1(pyzNO-κN)2(pyzNO-κO)2}n(ClO4)2n†, respectively, were investigated. These properties are altered substantially when the complexes are hydrated; for instance, by atmospheric exposure. The resulting species; Fe(pyzNO)5(H2O)3(ClO4)2* and [Fe(pyzNO-κN)4(H2O)2](ClO4)2.2H2O†, which have different hues of a bright yellow colour, were found to exhibit strong paramagnetism, in contrast to their anhydrous precursors, which are ‘EPR silent’. A low spin → high spin crossover (LS→HS, SCO) transition was therefore proposed to occur as the complexes become hydrated by atmospheric moisture. The red→yellow colour change is reversible, and dehydration of the yellow species by heating regenerates the red variant, a feature which lends itself to the potential applicability of the system as a sensor. Further emphasis on this potential derives from the fact that the hydration/dehydration process, and its accompanying physical changes, appears reversible even after many such treatments. It became of interest, then, to determine if these changes were limited to water-exposed samples, or if they occurred under more diverse solvent atmospheres. The reversibility of such exposure on the structure of the novel polynuclear complex was therefore investigated. In general, it was found that there occurred a strong solvent-complex association for the more polar solvents. Red→yellow, LS→HS events were seen when the complex was exposed to the vapours of p-dioxane, acetaldehyde and formaldehyde, and to a lesser extent, to that of methanol. In each case, significant structural changes were seen, as evidenced be comparative XRPD and thermo-analytical studies. Some of these changes have however been ascribed to the effects of partial dissolution upon extended exposure of the complex to the associated media. Exposure to less polar solvent atmospheres, such as those of cyclohexane, toluene, diethyl ether, etc., showed some signs of mild solvent surface adhesion, but were unaccompanied by discernible magnetic and colour changes. Another novel complex was produced during attempts to synthesize the PyzNO complexes from a mixture of a 2,2’-dimethoxypropane (DMP) and ethanol (1:1, v/v), rather than the methanol/DMP mixture which had been alternately used. The formula of the resulting complex is Fe(pyzNO)6(ClO4)2.3EtOH*. This EPR inactive product was orange in colour, and transformed into a bright yellow, strongly paramagnetic species upon atmospheric exposure. Further solvent studies showed that this species interacted significantly with all solvents tested, but generally more strongly with increasing solvent polarity. Orange→yellow colour changes occurred in environments saturated with p-dioxane, acetaldehyde and formaldehyde vapours. The DMSO-exposed sample transformed to dark red, due to suspected PyzNO substitution by the solvent. The red→yellow and orange→yellow colour changes were ascribed to the formal substitution of O-coordinated PyzNO (μ-PyzNO in the polymeric complex) by the incoming solvent. The resulting structural and geometric changes stimulated a redistribution of d electrons among the new constituent molecular orbitals of altered energy and symmetry. Therefore, although the colour changes were not conventionally solvatochromic - in that the original structure was lost on exposure – data suggested that it was the coordination of species of higher donor strength that produced the observed bathochromic shifts. A novel 4,4’-bipyridine-N-oxide Fe(II) perchlorate complex, Fe2(bipyNO)5(ClO4)4.6MeOH†, was also produced, primarily for physicochemical comparison with the PyzNO complexes. No colour or magnetic changes were seen on atmospheric exposure. The original complex was observed to be inherently paramagnetic, and no SCO events occurred upon solvent exposure. Despite this, thermal analyses showed that the complex did exhibit the strong uptake of polar solvents in general, but particularly with acetaldehyde. Significant structural changes upon exposure were limited to surface phenomena, with the exception of the acetaldehyde-exposed sample.
- Full Text:
- Date Issued: 2019
- Authors: Mpiti, Unako Bongani
- Date: 2019
- Subjects: Diazines , Ligands , Iron
- Language: English
- Type: text , Thesis , Masters , MSc
- Identifier: http://hdl.handle.net/10962/94753 , vital:31075
- Description: The characteristic magnetic and spectroscopic features associated with the red monomeric or dimeric, and polymeric pyrazine-N-oxide (PyzNO) iron(II) perchlorate complexes; Fen(μ1,1-pyzNO)2n-2(pyzNO)3n+2(ClO4)2n (n = {1, 2}*, and the novel compound {Fe(μ-pyzNO-κN,κO)n-1(pyzNO-κN)2(pyzNO-κO)2}n(ClO4)2n†, respectively, were investigated. These properties are altered substantially when the complexes are hydrated; for instance, by atmospheric exposure. The resulting species; Fe(pyzNO)5(H2O)3(ClO4)2* and [Fe(pyzNO-κN)4(H2O)2](ClO4)2.2H2O†, which have different hues of a bright yellow colour, were found to exhibit strong paramagnetism, in contrast to their anhydrous precursors, which are ‘EPR silent’. A low spin → high spin crossover (LS→HS, SCO) transition was therefore proposed to occur as the complexes become hydrated by atmospheric moisture. The red→yellow colour change is reversible, and dehydration of the yellow species by heating regenerates the red variant, a feature which lends itself to the potential applicability of the system as a sensor. Further emphasis on this potential derives from the fact that the hydration/dehydration process, and its accompanying physical changes, appears reversible even after many such treatments. It became of interest, then, to determine if these changes were limited to water-exposed samples, or if they occurred under more diverse solvent atmospheres. The reversibility of such exposure on the structure of the novel polynuclear complex was therefore investigated. In general, it was found that there occurred a strong solvent-complex association for the more polar solvents. Red→yellow, LS→HS events were seen when the complex was exposed to the vapours of p-dioxane, acetaldehyde and formaldehyde, and to a lesser extent, to that of methanol. In each case, significant structural changes were seen, as evidenced be comparative XRPD and thermo-analytical studies. Some of these changes have however been ascribed to the effects of partial dissolution upon extended exposure of the complex to the associated media. Exposure to less polar solvent atmospheres, such as those of cyclohexane, toluene, diethyl ether, etc., showed some signs of mild solvent surface adhesion, but were unaccompanied by discernible magnetic and colour changes. Another novel complex was produced during attempts to synthesize the PyzNO complexes from a mixture of a 2,2’-dimethoxypropane (DMP) and ethanol (1:1, v/v), rather than the methanol/DMP mixture which had been alternately used. The formula of the resulting complex is Fe(pyzNO)6(ClO4)2.3EtOH*. This EPR inactive product was orange in colour, and transformed into a bright yellow, strongly paramagnetic species upon atmospheric exposure. Further solvent studies showed that this species interacted significantly with all solvents tested, but generally more strongly with increasing solvent polarity. Orange→yellow colour changes occurred in environments saturated with p-dioxane, acetaldehyde and formaldehyde vapours. The DMSO-exposed sample transformed to dark red, due to suspected PyzNO substitution by the solvent. The red→yellow and orange→yellow colour changes were ascribed to the formal substitution of O-coordinated PyzNO (μ-PyzNO in the polymeric complex) by the incoming solvent. The resulting structural and geometric changes stimulated a redistribution of d electrons among the new constituent molecular orbitals of altered energy and symmetry. Therefore, although the colour changes were not conventionally solvatochromic - in that the original structure was lost on exposure – data suggested that it was the coordination of species of higher donor strength that produced the observed bathochromic shifts. A novel 4,4’-bipyridine-N-oxide Fe(II) perchlorate complex, Fe2(bipyNO)5(ClO4)4.6MeOH†, was also produced, primarily for physicochemical comparison with the PyzNO complexes. No colour or magnetic changes were seen on atmospheric exposure. The original complex was observed to be inherently paramagnetic, and no SCO events occurred upon solvent exposure. Despite this, thermal analyses showed that the complex did exhibit the strong uptake of polar solvents in general, but particularly with acetaldehyde. Significant structural changes upon exposure were limited to surface phenomena, with the exception of the acetaldehyde-exposed sample.
- Full Text:
- Date Issued: 2019
The development of amine-based extractants for separation of base metals in a sulfate medium
- Authors: Magwa, Nomampondo Penelope
- Date: 2015
- Subjects: Extraction (Chemistry) , Sulfates , Ligands , Benzimidazoles , Infrared spectroscopy , Nuclear magnetic resonance spectroscopy , Metal ions , Metals
- Language: English
- Type: Thesis , Doctoral , PhD
- Identifier: vital:4559 , http://hdl.handle.net/10962/d1020010
- Description: Tridentate benzimidazole-based ligands, bis((1H-benzimidazol-2-yl)methyl)sulfide (BNSN) and bis((1H-benzimidazol-2-yl)methyl)amine (BNNN), along with dinonylnaphthalene sulfonic acid (DNNSA) as a synergist, were investigated as potential selective extractants for Ni2+ from base metals in a solvent extraction system using 2-octanol/Shellsol 2325 (8:2) as diluent and modifier. However, extraction studies show a lack of pH-metric separation of the later 3d metal ions with bis((1-octylbenzimidazol-2-yl)methyl)sulfide (BONSN) and bis((1- decylbenzimidazol-2-yl)methyl)amine (BDNNN) as extractants, but extractions occurred in the low pH range with an opportunity for back extraction. This investigation suggested that tridentate ligands (at least those of the nature investigated here) are not feasible extractants for separation of base metal ions due to their lack of stereochemical “tailor-making.”
- Full Text:
- Date Issued: 2015
- Authors: Magwa, Nomampondo Penelope
- Date: 2015
- Subjects: Extraction (Chemistry) , Sulfates , Ligands , Benzimidazoles , Infrared spectroscopy , Nuclear magnetic resonance spectroscopy , Metal ions , Metals
- Language: English
- Type: Thesis , Doctoral , PhD
- Identifier: vital:4559 , http://hdl.handle.net/10962/d1020010
- Description: Tridentate benzimidazole-based ligands, bis((1H-benzimidazol-2-yl)methyl)sulfide (BNSN) and bis((1H-benzimidazol-2-yl)methyl)amine (BNNN), along with dinonylnaphthalene sulfonic acid (DNNSA) as a synergist, were investigated as potential selective extractants for Ni2+ from base metals in a solvent extraction system using 2-octanol/Shellsol 2325 (8:2) as diluent and modifier. However, extraction studies show a lack of pH-metric separation of the later 3d metal ions with bis((1-octylbenzimidazol-2-yl)methyl)sulfide (BONSN) and bis((1- decylbenzimidazol-2-yl)methyl)amine (BDNNN) as extractants, but extractions occurred in the low pH range with an opportunity for back extraction. This investigation suggested that tridentate ligands (at least those of the nature investigated here) are not feasible extractants for separation of base metal ions due to their lack of stereochemical “tailor-making.”
- Full Text:
- Date Issued: 2015
Synthesis, characterisation and biological activity of 2-(methylthiomethyl)anilines, 2-(methylthio)anilines, their Schiff-base derivatives and metal(II) (Co, Ni, Cu) complexes
- Olalekan, Temitope Elizabeth
- Authors: Olalekan, Temitope Elizabeth
- Date: 2013
- Subjects: Aniline , Schiff bases , Ligands , Nuclear magnetic resonance spectroscopy , Chelates , X-ray crystallography , Antimalarials
- Language: English
- Type: Thesis , Doctoral , PhD
- Identifier: vital:4562 , http://hdl.handle.net/10962/d1020868
- Description: A series of 31 sulfur-nitrogen donor ligands and 64 metal(II) complexes have been investigated. The thiomethylated aniline ligands 2–(methylthiomethyl)aniline 2MT and 2–(methylthio)aniline 2MA were synthesized with their substituted derivatives (-Me, -MeO, -Cl, -Br, -NO2) to serve as chelating agents. These ligands behave as bidentate ligands with SN donor group with Co(II), Ni(II) and Cu(II). The Co(II) and Ni(II) complexes have the ML2Cl2 molecular formula while the Cu(II) complexes formed with MLCl2 stoichiometry where L is the bidentate ligand. The ligands and their metal(II) complexes have been characterized by elemental analysis and with spectroscopic techniques. The trend observed in the NMR spectra and IR frequencies of the thiomethylated compounds shows there is a significant difference between the 2MT and 2MA series as a result of sulfur lone pairs extending the conjugation of the aromatic ring in the case of the latter. The effect of the position and electronic nature of ring substituent on the NMR shifts of the amine protons is discussed. The 6- and 5-membered chelate complexes formed by the 2MT and 2MA ligands respectively do not show significant diversity in their spectroscopic properties. From the elemental analysis for the Co(II) and Ni(II) complexes, their compositions reveal 1:2 M:L stoichiometry with 2 chlorine atoms from the respective metal salts. In addition, the spectroscopic data are largely indicative of tetragonally distorted structures for these solid complexes. The X-ray crystallography data reveal the Cu(II) complexes exist as square pyramidal dimers and with long Cu–Cl equitorial bonds fit into the tetragonally distorted octahedral structure. The electrolytic nature of Co(II) and Cu(II) complexes in DMF were found to be similar, they behave as non electrolytes in contrast to Ni(II) complexes which are 1:1 electrolytes. The electronic spectra of these metal(II) complexes were found to be different for both their solid forms and in solutions of DMF and DMSO and this has been discussed. The thiomethylated aniline ligands possess the amine and thioether groups which are present in many known biologically active compounds, hence the biological activity of the ligands and their metal complexes were tested against three strains of bacteria and one fungus. The methoxy-substituted derivatives were found to possess better inhibitory activity and this was similarly reflected in the metal(II) complexes. The activity of the complexes can be said to be in the order, Cu(II) > Co(II) > Ni(II). The Schiff-base derivatives were prepared from the ligands and para-methoxysalicylaldehyde and their Cu(II) complexes were synthesized in order to determine their biological activity. The Schiff-base ligands were found to be less active than their parent ligands. The Cu(II) complexes are not soluble in water, DMSO or DMF, as a result and could not be evaluated for their biological activity. Based on the good results from the antimicrobial evaluation, the antiplasmodial activity of some of the Co(II), Ni(II) and Cu(II) complexes of the thiomethylated ligands against Plasmodium falciparum (FCR-3) was determined. At 50 μM concentration level, the Cu(II) complexes show activity equal or better than the prophylactic chloroquine. The Cu(II) complexes with the methoxy-substituted demonstrated exceptional activity but their Co(II) and Ni(II) analogues did not show any activity. The cytotoxicity of the active Cu(II) complexes at 50 μM concentration was determined against the breast cancer cell line (MDA-MB-231). The compounds destroyed the cancer cell in the range of 28–40%, thus showing their preferred activity against the parasitic cell instead of the cancer cell. The selectivity demonstrated by these compounds have shown them to be potential antimalarial agents and this could be further investigated.
- Full Text:
- Date Issued: 2013
- Authors: Olalekan, Temitope Elizabeth
- Date: 2013
- Subjects: Aniline , Schiff bases , Ligands , Nuclear magnetic resonance spectroscopy , Chelates , X-ray crystallography , Antimalarials
- Language: English
- Type: Thesis , Doctoral , PhD
- Identifier: vital:4562 , http://hdl.handle.net/10962/d1020868
- Description: A series of 31 sulfur-nitrogen donor ligands and 64 metal(II) complexes have been investigated. The thiomethylated aniline ligands 2–(methylthiomethyl)aniline 2MT and 2–(methylthio)aniline 2MA were synthesized with their substituted derivatives (-Me, -MeO, -Cl, -Br, -NO2) to serve as chelating agents. These ligands behave as bidentate ligands with SN donor group with Co(II), Ni(II) and Cu(II). The Co(II) and Ni(II) complexes have the ML2Cl2 molecular formula while the Cu(II) complexes formed with MLCl2 stoichiometry where L is the bidentate ligand. The ligands and their metal(II) complexes have been characterized by elemental analysis and with spectroscopic techniques. The trend observed in the NMR spectra and IR frequencies of the thiomethylated compounds shows there is a significant difference between the 2MT and 2MA series as a result of sulfur lone pairs extending the conjugation of the aromatic ring in the case of the latter. The effect of the position and electronic nature of ring substituent on the NMR shifts of the amine protons is discussed. The 6- and 5-membered chelate complexes formed by the 2MT and 2MA ligands respectively do not show significant diversity in their spectroscopic properties. From the elemental analysis for the Co(II) and Ni(II) complexes, their compositions reveal 1:2 M:L stoichiometry with 2 chlorine atoms from the respective metal salts. In addition, the spectroscopic data are largely indicative of tetragonally distorted structures for these solid complexes. The X-ray crystallography data reveal the Cu(II) complexes exist as square pyramidal dimers and with long Cu–Cl equitorial bonds fit into the tetragonally distorted octahedral structure. The electrolytic nature of Co(II) and Cu(II) complexes in DMF were found to be similar, they behave as non electrolytes in contrast to Ni(II) complexes which are 1:1 electrolytes. The electronic spectra of these metal(II) complexes were found to be different for both their solid forms and in solutions of DMF and DMSO and this has been discussed. The thiomethylated aniline ligands possess the amine and thioether groups which are present in many known biologically active compounds, hence the biological activity of the ligands and their metal complexes were tested against three strains of bacteria and one fungus. The methoxy-substituted derivatives were found to possess better inhibitory activity and this was similarly reflected in the metal(II) complexes. The activity of the complexes can be said to be in the order, Cu(II) > Co(II) > Ni(II). The Schiff-base derivatives were prepared from the ligands and para-methoxysalicylaldehyde and their Cu(II) complexes were synthesized in order to determine their biological activity. The Schiff-base ligands were found to be less active than their parent ligands. The Cu(II) complexes are not soluble in water, DMSO or DMF, as a result and could not be evaluated for their biological activity. Based on the good results from the antimicrobial evaluation, the antiplasmodial activity of some of the Co(II), Ni(II) and Cu(II) complexes of the thiomethylated ligands against Plasmodium falciparum (FCR-3) was determined. At 50 μM concentration level, the Cu(II) complexes show activity equal or better than the prophylactic chloroquine. The Cu(II) complexes with the methoxy-substituted demonstrated exceptional activity but their Co(II) and Ni(II) analogues did not show any activity. The cytotoxicity of the active Cu(II) complexes at 50 μM concentration was determined against the breast cancer cell line (MDA-MB-231). The compounds destroyed the cancer cell in the range of 28–40%, thus showing their preferred activity against the parasitic cell instead of the cancer cell. The selectivity demonstrated by these compounds have shown them to be potential antimalarial agents and this could be further investigated.
- Full Text:
- Date Issued: 2013
- «
- ‹
- 1
- ›
- »