Comparative study of the effect of silver nanoparticles on the hexokinase activity from human and Trypanosoma brucei
- Authors: Mlozen, Madalitso Martin
- Date: 2015
- Subjects: Nanoparticles , Silver , Glucokinase , Trypanosoma brucei , Drug resistance , African trypanosomiasis
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: vital:4149 , http://hdl.handle.net/10962/d1017910
- Full Text:
- Date Issued: 2015
- Authors: Mlozen, Madalitso Martin
- Date: 2015
- Subjects: Nanoparticles , Silver , Glucokinase , Trypanosoma brucei , Drug resistance , African trypanosomiasis
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: vital:4149 , http://hdl.handle.net/10962/d1017910
- Full Text:
- Date Issued: 2015
Enzymology of activated sewage sludge during anaerobic treatment of wastewaters : identification, characterisation, isolation and partial purification of proteases
- Tshivhunge, Azwiedziswi Sylvia
- Authors: Tshivhunge, Azwiedziswi Sylvia
- Date: 2001
- Subjects: Sewage sludge , Sewage sludge -- Environmental aspects , Sewage sludge digestion , Anaerobic bacteria
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: vital:4012 , http://hdl.handle.net/10962/d1004072 , Sewage sludge , Sewage sludge -- Environmental aspects , Sewage sludge digestion , Anaerobic bacteria
- Description: During anaerobic digestion bacteria inside the digester require a carbon source for their growth and metabolism, sewage sludge was used as a carbon source in this study. The COD content was used to measure the disappearance of the substrate. COD content was reduced by 48.3% and 49% in the methanogenic and sulphidogenic bioreactors, respectively, while sulphate concentration was reduced by 40%, producing 70mg/L of hydrogen sulphide as the end product over the first 5-7 days. Sulphate (which is used as a terminal electron acceptor of sulphur reducing bacteria) has little or no effect on the sulphidogenic and methanogenic proteases. Sulphite and sulphide (the intermediate and end product of sulphate reduction) increased protease activity by 20% and 40%-80%, respectively. Maximum protease activity occurred on day 21 in the methanogenic reactor and on day 9 in the sulphidogenic reactor. The absorbance, which indicates the level of amino acid increased to 2 and 9 for methanogenic and sulphidogenic bioreactors, respectively. Proteases that were active during anaerobic digestion were associated with the pellet (organic particulate matter) of the sewage. These enzymes have an optimum activity at pH 10 and at temperature of 50°C. The proteases that were active at pH 5 and 7, had optimum temperatures at 30°C and 60°C, respectively. Due to their association with organic particulate matter, these enzymes were stable at their optimum temperatures for at least five hours at their respective pH. Inhibition by PMSF, TPCK and 1.10-phenanthroline suggested that proteases inside the anaerobic digester are a mixture of cysteine, serine and metalloproteases. At pH 5, however, EDTA appeared to enhance protease activity by 368% (three-fold). Acetic acid decreased protease activity by 21%, while both propionic and butyric acid at 200 mg/L cause total inhibition of protease activity while these acids at higher pH (where they exist as their corresponding salts) exerted little effect. Copper, iron and zinc inhibited protease activity by 85% at pH 5 with concentrations ranging between 200 and 600 mg/L. On the other hand, nickel, showed an increase in protease activity of nearly 250%. At pH 7 and 10, copper had no effect on protease activity while iron, nickel and zinc inhibited these enzymes by 20-40%. Proteases at pH 7 were extracted from the pellet by sonication, releasing 50% of the total enzymes into the solution. The enzymes were precipitated by ammonium sulphate precipitation, and further purified by ion exchange chromatography and gel filtration. Ion exchange chromatography revealed that most of the enzymes that hydrolyse proteins are negatively charged while gel filtration showed that their molecular weight is approximately 500 kDa.
- Full Text:
- Date Issued: 2001
- Authors: Tshivhunge, Azwiedziswi Sylvia
- Date: 2001
- Subjects: Sewage sludge , Sewage sludge -- Environmental aspects , Sewage sludge digestion , Anaerobic bacteria
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: vital:4012 , http://hdl.handle.net/10962/d1004072 , Sewage sludge , Sewage sludge -- Environmental aspects , Sewage sludge digestion , Anaerobic bacteria
- Description: During anaerobic digestion bacteria inside the digester require a carbon source for their growth and metabolism, sewage sludge was used as a carbon source in this study. The COD content was used to measure the disappearance of the substrate. COD content was reduced by 48.3% and 49% in the methanogenic and sulphidogenic bioreactors, respectively, while sulphate concentration was reduced by 40%, producing 70mg/L of hydrogen sulphide as the end product over the first 5-7 days. Sulphate (which is used as a terminal electron acceptor of sulphur reducing bacteria) has little or no effect on the sulphidogenic and methanogenic proteases. Sulphite and sulphide (the intermediate and end product of sulphate reduction) increased protease activity by 20% and 40%-80%, respectively. Maximum protease activity occurred on day 21 in the methanogenic reactor and on day 9 in the sulphidogenic reactor. The absorbance, which indicates the level of amino acid increased to 2 and 9 for methanogenic and sulphidogenic bioreactors, respectively. Proteases that were active during anaerobic digestion were associated with the pellet (organic particulate matter) of the sewage. These enzymes have an optimum activity at pH 10 and at temperature of 50°C. The proteases that were active at pH 5 and 7, had optimum temperatures at 30°C and 60°C, respectively. Due to their association with organic particulate matter, these enzymes were stable at their optimum temperatures for at least five hours at their respective pH. Inhibition by PMSF, TPCK and 1.10-phenanthroline suggested that proteases inside the anaerobic digester are a mixture of cysteine, serine and metalloproteases. At pH 5, however, EDTA appeared to enhance protease activity by 368% (three-fold). Acetic acid decreased protease activity by 21%, while both propionic and butyric acid at 200 mg/L cause total inhibition of protease activity while these acids at higher pH (where they exist as their corresponding salts) exerted little effect. Copper, iron and zinc inhibited protease activity by 85% at pH 5 with concentrations ranging between 200 and 600 mg/L. On the other hand, nickel, showed an increase in protease activity of nearly 250%. At pH 7 and 10, copper had no effect on protease activity while iron, nickel and zinc inhibited these enzymes by 20-40%. Proteases at pH 7 were extracted from the pellet by sonication, releasing 50% of the total enzymes into the solution. The enzymes were precipitated by ammonium sulphate precipitation, and further purified by ion exchange chromatography and gel filtration. Ion exchange chromatography revealed that most of the enzymes that hydrolyse proteins are negatively charged while gel filtration showed that their molecular weight is approximately 500 kDa.
- Full Text:
- Date Issued: 2001
Synthesis and interaction of secondary N-nitrosamines with acetylcholinesterase
- Authors: Mmutle, Tsietso Bernard
- Date: 1991
- Subjects: Chemistry, Physical and theoretical , Enzyme kinetics
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: vital:4058 , http://hdl.handle.net/10962/d1004119 , Chemistry, Physical and theoretical , Enzyme kinetics
- Description: Secondary N-nitrosamines: diphenylnitrosamine (DPhNA), dimethylnitrosamine (DMNA), diethylnitrosamine (DENA), dipropylnitrosamine (DPNA), dibutylnitrosamine (DBNA), diethanolnitrosamine (DEtNA), methylnitrosoglycine (MNGly), nitrosopyrrolidine (NPyr), nitrosomorpholine (NMor) and nitrosopiperidine (NPip) were synthesised and their interaction with acetylcholinesterase (AChE) was investigated. Analyses of kinetic results show that DMNA (Ki=34.78 μM); DENA (Ki=54.24 μM); DPNA(Ki=60.36 μM); DBNA(Ki=95.54 μM); DEtNA(Ki=43.68 μM)MNGly (Ki=30.18 μM); NPip (Ki=123 μM); NPyr (Ki=66.07 μM), NMor (Ki=73.93 μM) and DPhNA (Ki=20.32 μM) are competitive and reversible inhibitors of acetylcholinesterase, with respect to the substrate, acetylthiocholine chloride, ATChCl. With time they act as irreversible covalent inhibitors with dipropy1nitrosamine producing 72% inactivation after 60 minutes. Scatchard analyses of f1uorometric titrations, (Kd=0.75mM-4.09mM); gel chromatography (Kd=O. 80mM-4. 60mM) and equilibrium dia1ysis (Kd=O. 71mM- 4.21mM) for MNG1y, DMNA, DEtNA, DENA, DPNA, NPyr, DSNA, NMor and NPip show that these compounds have weaker affinity for the enzyme, as compared to the much tightly binding aromatic DPhNA, Kd values (0.65mM, 0.68mM and 0.68mM) for fluorometric experiments, gel chromatography and equilibrium dialysis respectively. In all cases, the number of binding sites of acetylcholinesterase averaged to four.
- Full Text:
- Date Issued: 1991
- Authors: Mmutle, Tsietso Bernard
- Date: 1991
- Subjects: Chemistry, Physical and theoretical , Enzyme kinetics
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: vital:4058 , http://hdl.handle.net/10962/d1004119 , Chemistry, Physical and theoretical , Enzyme kinetics
- Description: Secondary N-nitrosamines: diphenylnitrosamine (DPhNA), dimethylnitrosamine (DMNA), diethylnitrosamine (DENA), dipropylnitrosamine (DPNA), dibutylnitrosamine (DBNA), diethanolnitrosamine (DEtNA), methylnitrosoglycine (MNGly), nitrosopyrrolidine (NPyr), nitrosomorpholine (NMor) and nitrosopiperidine (NPip) were synthesised and their interaction with acetylcholinesterase (AChE) was investigated. Analyses of kinetic results show that DMNA (Ki=34.78 μM); DENA (Ki=54.24 μM); DPNA(Ki=60.36 μM); DBNA(Ki=95.54 μM); DEtNA(Ki=43.68 μM)MNGly (Ki=30.18 μM); NPip (Ki=123 μM); NPyr (Ki=66.07 μM), NMor (Ki=73.93 μM) and DPhNA (Ki=20.32 μM) are competitive and reversible inhibitors of acetylcholinesterase, with respect to the substrate, acetylthiocholine chloride, ATChCl. With time they act as irreversible covalent inhibitors with dipropy1nitrosamine producing 72% inactivation after 60 minutes. Scatchard analyses of f1uorometric titrations, (Kd=0.75mM-4.09mM); gel chromatography (Kd=O. 80mM-4. 60mM) and equilibrium dia1ysis (Kd=O. 71mM- 4.21mM) for MNG1y, DMNA, DEtNA, DENA, DPNA, NPyr, DSNA, NMor and NPip show that these compounds have weaker affinity for the enzyme, as compared to the much tightly binding aromatic DPhNA, Kd values (0.65mM, 0.68mM and 0.68mM) for fluorometric experiments, gel chromatography and equilibrium dialysis respectively. In all cases, the number of binding sites of acetylcholinesterase averaged to four.
- Full Text:
- Date Issued: 1991
Synthetic studies of swazinecic acid dilactone
- Authors: Liddell, James Richard
- Date: 1989
- Subjects: Phrrolizidines Alkaloids -- Synthesis
- Language: English
- Type: Thesis , Doctoral , PhD
- Identifier: vital:4298 , http://hdl.handle.net/10962/d1004668
- Description: The occurrence and syntheses of the pyrrolizidine alkaloids from 1976 to March 1988 is reviewed, and a stereoselective total synthesis of swazinecic acid dilactone was attempted. One approach involved an asymmetric synthesis of the allylic α-hydroxy acid 2-hydroxy-2,3-dimethyl-3-butenoic acid employing oxazolines as chiral auxilaries. The oxazoline, (4S,5S)-2-(1-bromoethyl)-4-methoxymethyl-5-phenyl-2-oxazoline, was obtained by direct halogenation of the 2-ethyl oxazoline analogue. This was condensed with acetone in a Darzens type reaction and the resultant epoxy oxazoline rearranged to an allylic α-hydroxy oxazoline which was then hydrolysed to the chiral hydroxy acid in low enantiomeric excess. The hydroxy acid, as the O-silylated ethyl ester, was elaborated by allylic diethyl malonate to bromination and condensation with diethyl 5-carboethoxy-2-methyl-3- methylene-2-0-tert-butyldimethylsilylhexanedioate. Removal of the silyl protecting group and epoxidation provided an epoxy triester, which on hydrolysis provided a mixture of acids of uncertain structures.
- Full Text:
- Date Issued: 1989
- Authors: Liddell, James Richard
- Date: 1989
- Subjects: Phrrolizidines Alkaloids -- Synthesis
- Language: English
- Type: Thesis , Doctoral , PhD
- Identifier: vital:4298 , http://hdl.handle.net/10962/d1004668
- Description: The occurrence and syntheses of the pyrrolizidine alkaloids from 1976 to March 1988 is reviewed, and a stereoselective total synthesis of swazinecic acid dilactone was attempted. One approach involved an asymmetric synthesis of the allylic α-hydroxy acid 2-hydroxy-2,3-dimethyl-3-butenoic acid employing oxazolines as chiral auxilaries. The oxazoline, (4S,5S)-2-(1-bromoethyl)-4-methoxymethyl-5-phenyl-2-oxazoline, was obtained by direct halogenation of the 2-ethyl oxazoline analogue. This was condensed with acetone in a Darzens type reaction and the resultant epoxy oxazoline rearranged to an allylic α-hydroxy oxazoline which was then hydrolysed to the chiral hydroxy acid in low enantiomeric excess. The hydroxy acid, as the O-silylated ethyl ester, was elaborated by allylic diethyl malonate to bromination and condensation with diethyl 5-carboethoxy-2-methyl-3- methylene-2-0-tert-butyldimethylsilylhexanedioate. Removal of the silyl protecting group and epoxidation provided an epoxy triester, which on hydrolysis provided a mixture of acids of uncertain structures.
- Full Text:
- Date Issued: 1989
- «
- ‹
- 1
- ›
- »