Building capacity for green, just and sustainable futures – a new knowledge field requiring transformative research methodology
- Rosenberg, Eureta, Ramsarup, Presha, Gumede, Sibusisiwe, Lotz-Sisitka, Heila
- Authors: Rosenberg, Eureta , Ramsarup, Presha , Gumede, Sibusisiwe , Lotz-Sisitka, Heila
- Date: 2016
- Subjects: Sustainable development -- South Africa , Renewable energy sources , Climatic changes , Clean energy
- Language: English
- Type: article , text
- Identifier: http://hdl.handle.net/10962/59613 , vital:27631 , http://joe.ukzn.ac.za/Libraries/No_65_2016/JoE_complete.sflb.ashx
- Description: Education has contributed to a society-wide awareness of environmental issues, and we are increasingly confronted with the need for new ways to generate energy, save water and reduce pollution. Thus new forms of work are emerging and government, employers and educators need to know what ‘green’ skills South Africa needs and has. This creates a new demand for ‘green skills’ research. We propose that this new knowledge field – like some other educational fields – requires a transformative approach to research methodology. In conducting reviews of existing research, we found that a transformative approach requires a reframing of key concepts commonly used in researching work and learning; multi-layered, mixed method studies; researching within and across diverse knowledge fields including non-traditional fields; and both newly configured national platforms and new conceptual frameworks to help us integrate coherently across these. Critical realism is presented as a helpful underpinning for such conceptual frameworks, and implications for how universities prepare educational researchers are flagged.
- Full Text:
- Date Issued: 2016
- Authors: Rosenberg, Eureta , Ramsarup, Presha , Gumede, Sibusisiwe , Lotz-Sisitka, Heila
- Date: 2016
- Subjects: Sustainable development -- South Africa , Renewable energy sources , Climatic changes , Clean energy
- Language: English
- Type: article , text
- Identifier: http://hdl.handle.net/10962/59613 , vital:27631 , http://joe.ukzn.ac.za/Libraries/No_65_2016/JoE_complete.sflb.ashx
- Description: Education has contributed to a society-wide awareness of environmental issues, and we are increasingly confronted with the need for new ways to generate energy, save water and reduce pollution. Thus new forms of work are emerging and government, employers and educators need to know what ‘green’ skills South Africa needs and has. This creates a new demand for ‘green skills’ research. We propose that this new knowledge field – like some other educational fields – requires a transformative approach to research methodology. In conducting reviews of existing research, we found that a transformative approach requires a reframing of key concepts commonly used in researching work and learning; multi-layered, mixed method studies; researching within and across diverse knowledge fields including non-traditional fields; and both newly configured national platforms and new conceptual frameworks to help us integrate coherently across these. Critical realism is presented as a helpful underpinning for such conceptual frameworks, and implications for how universities prepare educational researchers are flagged.
- Full Text:
- Date Issued: 2016
Electrical power output estimation model for a conical diffuser augmented wind turbine
- Authors: Masukume, Peace-Maker
- Date: 2016
- Subjects: Wind power , Wind turbines , Renewable energy sources
- Language: English
- Type: Thesis , Doctoral , DPhil
- Identifier: http://hdl.handle.net/10353/1517 , vital:27404
- Description: Energy is integral to the quality of life of any society. However, meeting the demand for energy sustainably is the main challenge facing humanity. In general, non-renewable energy resources are used to supply the ever increasing energy demand. However, the extraction and processing of these resources is accompanied by the production of wastes which are a health hazard and impact negatively on climate change. Considering the finite nature of non-renewable sources, the environmental concerns which are associated with their usage and ensuring energy security, renewable energy sources have been brought in the energy supply chain. Wind energy is one of the renewable energy sources which has been supplying electrical energy to the ever increasing energy demand of humanity. Wind energy technology is a mature technology which over and above the bare (conventional) wind turbine technology has seen the development of duct augmented wind turbines. Ducts are used to encase wind turbine rotors to augment the power output of wind turbines especially in low wind speed areas. Though the technology has been under study for decades now, research indicates that there is no known model to estimate the power output of a diffuser augmented wind turbine. This thesis presents the development of the conical Diffuser Augmented Wind Turbine (DAWT) power output estimation model and its validation.
- Full Text:
- Date Issued: 2016
- Authors: Masukume, Peace-Maker
- Date: 2016
- Subjects: Wind power , Wind turbines , Renewable energy sources
- Language: English
- Type: Thesis , Doctoral , DPhil
- Identifier: http://hdl.handle.net/10353/1517 , vital:27404
- Description: Energy is integral to the quality of life of any society. However, meeting the demand for energy sustainably is the main challenge facing humanity. In general, non-renewable energy resources are used to supply the ever increasing energy demand. However, the extraction and processing of these resources is accompanied by the production of wastes which are a health hazard and impact negatively on climate change. Considering the finite nature of non-renewable sources, the environmental concerns which are associated with their usage and ensuring energy security, renewable energy sources have been brought in the energy supply chain. Wind energy is one of the renewable energy sources which has been supplying electrical energy to the ever increasing energy demand of humanity. Wind energy technology is a mature technology which over and above the bare (conventional) wind turbine technology has seen the development of duct augmented wind turbines. Ducts are used to encase wind turbine rotors to augment the power output of wind turbines especially in low wind speed areas. Though the technology has been under study for decades now, research indicates that there is no known model to estimate the power output of a diffuser augmented wind turbine. This thesis presents the development of the conical Diffuser Augmented Wind Turbine (DAWT) power output estimation model and its validation.
- Full Text:
- Date Issued: 2016
The design, management and testing of a solar vehicle's energy strategy
- Authors: Jordaan, Johan
- Date: 2016
- Subjects: Solar energy -- Hybrid systems , Renewable energy sources
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: http://hdl.handle.net/10948/7428 , vital:21362
- Description: In recent years the interest in implementing solar energy on vehicles (electrical and hybrid) has grown significantly [1]. There are currently limitations in this sector, such as the low energy density (efficiency of conversion) of this source, but it is still a renewable resource and as such, there is a growing interest [1]. A “smart” energy strategy implemented on a solar/electrical vehicle, in order to increase its energy harvesting volume, could enhance the growth of this sector. A tracking algorithm for a solar vehicle’s MPPT (Maximum Power Point Tracker) can be designed to source solar energy very effectively and to increase the speed of finding (tracking) this optimal sourcing point (solar panel voltage and current). Even though there are many different MPPT algorithms, it was decided that most of them were designed for stationary MPPT applications and the dynamics of implementing a MPPT on a vehicle create some unique scenarios. These include: Shadow flicker. This is rhythmic, rapid moving shadows across a solar panel, such as shadows from a line of trees: Rapid changes in solar panel orientation due to the road surface/relief; Rapid changes in panel temperature due to the location of the vehicle. The aim of the research can be divided into three outcomes: 1 Creating a “Smart” energy strategy/control, 2 Implement the new control system on a solar vehicle’s MPPT, and 3 Harvesting maximum energy from solar panels using the new energy strategy. The term “smart” is used to indicate the ability of the MPPT algorithm to be updated and improved based on previous results. A MPPT and scaled solar vehicle is designed and manufactured in order to test the MPPT algorithm. The purpose of using a self-developed experimental setup is to have more control over the system variables as well as having the maximum freedom in setting up the system parameters.
- Full Text:
- Date Issued: 2016
- Authors: Jordaan, Johan
- Date: 2016
- Subjects: Solar energy -- Hybrid systems , Renewable energy sources
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: http://hdl.handle.net/10948/7428 , vital:21362
- Description: In recent years the interest in implementing solar energy on vehicles (electrical and hybrid) has grown significantly [1]. There are currently limitations in this sector, such as the low energy density (efficiency of conversion) of this source, but it is still a renewable resource and as such, there is a growing interest [1]. A “smart” energy strategy implemented on a solar/electrical vehicle, in order to increase its energy harvesting volume, could enhance the growth of this sector. A tracking algorithm for a solar vehicle’s MPPT (Maximum Power Point Tracker) can be designed to source solar energy very effectively and to increase the speed of finding (tracking) this optimal sourcing point (solar panel voltage and current). Even though there are many different MPPT algorithms, it was decided that most of them were designed for stationary MPPT applications and the dynamics of implementing a MPPT on a vehicle create some unique scenarios. These include: Shadow flicker. This is rhythmic, rapid moving shadows across a solar panel, such as shadows from a line of trees: Rapid changes in solar panel orientation due to the road surface/relief; Rapid changes in panel temperature due to the location of the vehicle. The aim of the research can be divided into three outcomes: 1 Creating a “Smart” energy strategy/control, 2 Implement the new control system on a solar vehicle’s MPPT, and 3 Harvesting maximum energy from solar panels using the new energy strategy. The term “smart” is used to indicate the ability of the MPPT algorithm to be updated and improved based on previous results. A MPPT and scaled solar vehicle is designed and manufactured in order to test the MPPT algorithm. The purpose of using a self-developed experimental setup is to have more control over the system variables as well as having the maximum freedom in setting up the system parameters.
- Full Text:
- Date Issued: 2016
- «
- ‹
- 1
- ›
- »