Aquatic–terrestrial trophic linkages via riverine invertebrates in a South African catchment
- Authors: Moyo, Sydney
- Date: 2016
- Language: English
- Type: text , Thesis , Doctoral , PhD
- Identifier: http://hdl.handle.net/10962/54427 , vital:26564
- Description: Rivers play a vital role in human livelihoods and are likely to undergo substantial alteration due to climate and land use changes from an increasing human population. Mitigating the pressures facing rivers in the world requires scientists and environmental managers to understand the ecological mechanisms, and ultimately the strength, of connections between ecosystems. This understanding of connections between adjacent habitats will enable environmental managers to predict the consequences of perturbing these linkages in the future. In this thesis, aquatic-terrestrial linkages in rivers were investigated using ecologically meaningful variables including abundances, biomasses, stable isotopes and fatty acids. This study is part of a larger project entitled “Connectivity through allochthony: reciprocal links between adjacent aquatic and terrestrial ecosystems in South Africa”, in which a team of researchers assessed a variety of pathways connecting riverine and estuarine systems to land within a catchment in the Eastern Cape, South Africa. I conceptualised the flow of energy within a temperate southern hemisphere river (the Kowie River) within theoretical models of energy flow such as the River Continuum Concept (RCC; presents lotic systems as being longitudinally linked with food webs in shaded headwaters being principally driven by allochthonous energy, with the addition of autochthonous food as a minor carbon source in the lower reaches) and the Riverine Productivity Model (RPM; proposes consumers derive most of their energy from local production of phytoplankton, benthic algae and aquatic plants, as well as directly from riparian zones via terrestrial leaf litter). Using the RCC as a starting point, I collected macroinvertebrates (September 2012 to May 2013) along a longitudinal gradient and grouped them into functional feeding groups (FFGs). The results revealed that gatherers and filterers dominated in the Kowie River, and together represented 50 – 83% of the invertebrate assemblages. There was a general paucity of shredders (relative abundance was ≤ 10% across all sites and seasons). The changes in relative abundances of different FFGs did not follow predictions of the RCC along the longitudinal gradient, as there were no correlations of community structure with some physical attributes (stream width, canopy cover, distance of river) that changed along the river continuum. However, FFG abundances were related to water velocity, total dissolved solids and canopy cover. Broadly, the Kowie River data showed that changes in relative abundances of FFGs along the river continuum could not be explained by changes in physical attributes alone, and may be highly influenced by the availability of food and the chemistry of the stream. Analysis of stable carbon (δ13C) and nitrogen (δ15N) isotopes was used to estimate the contributions of algal and land-based production to consumers over space (six sites) and time (November 2012 to September 2013). Carbon contributions determined by the use of mixing models (Stable Isotope Analysis in R) revealed that consumers in the headwater assimilated mainly terrestrially-derived organic matter, with consumers in the middle and lower reaches assimilating autochthonous basal resources (macrophytes and algae). The findings from this river supported aspects of the RCC (at the headwaters; terrestrial organic matter made up 41% of consumer diets), but overall the data supported the predictions of the RPM (local production made the highest contributions of 50 – 86% to all FFGs across all seasons). The carbon isotopes of consumers and their food sources changed substantially every season, indicating that samples of food sources and consumers should be analysed many times throughout the year to capture that variability and to ensure that ephemeral components of the food web are not missed. To validate the findings from the isotope data, fatty acids were used as complementary tracers to determine the contributions of algal versus terrestrial organic matter to the consumers. Fatty acid tracers for terrestrial (Ʃω3/Ʃω6; 18:2ω6; 18:3ω3) vs aquatic (Ʃω3/Ʃω6; 20:5ω3) sources corroborated the findings from the isotope data set, as the mean ratio of Ʃω3/Ʃω6 in consumers was less than one at the headwaters (indicating allochthony), while middle and lower reaches were associated with Ʃω3/Ʃω6 > 1 (indicating autochthony). In addition to the tracer and FFG analyses for examining trophic connections between land and river, the bidirectional exchange of organisms between the riparian zone and the river was assessed using floating pyramidal traps (to measure emergence) and pan traps (for infalling invertebrates) placed at different sites in the river and the biomass in each trap was determined. The exchanges were variable over space and time, with emergence peaking in summer (169 to 1402 mg m-2 day-1) and declining in winter (3 to 28 mg m-2 day-1). Similarly, infalling invertebrates increased in summer (413 to 679 mg m-2 day-1) and declined in winter (11 to 220 mg m-2 day-1). Biomass measurements are indications of quantity that ignore nutritional quality, so I determined the bidirectional flow of invertebrates using absolute concentrations of physiologically important biochemical compounds (essential and polyunsaturated fatty acids). The fluxes of emergent and infalling arthropods peaked in summer (emergence = 0.3 to 18 mg m-2 day-1 and terrestrial infall = 0.3 to 3 mg m-2 day-1) and declined in winter (emergence = 0.01 to 0.51 mg m-2 day-1 and terrestrial infall = 0.01 to 0.03 mg m-2 day-1). However, during some seasons, no significant differences in polyunsaturated fatty acid flux in either direction were observed; this finding indicated the balance of reciprocal subsidisation via reciprocal flows of animals. Factors such as air temperature and algal productivity affected the reciprocal flows between adjacent habitats, with algal productivity being positively related to emergence while air temperature was positively correlated to infalling terrestrial invertebrates. This research enhances the growing body of literature on the function of riverine systems and offers some invaluable information on the flow of energy and the role played by invertebrates in translocating nutrients from terrestrial systems to aquatic systems and vice versa. This study unifies the concepts of the RCC and RPM and shows that these concepts are not limited only to large rivers, but are applicable to small southern temperate rivers too. However, some tenets of the theoretical models were challenged. For example, it challenges the proposition by the RCC that the fine particulate organic matter leaked from upstream breakdown of coarse particulate organic matter is predominantly allochthonous. Additionally, this study showed that in the headwaters, the RPM underestimated the role of autochthony. Overall, the results showed that the Kowie River and its riparian area are intrinsically connected. Once we understand the mechanisms controlling connections and subsidies across ecotones, we can then start to predict the consequences of disruptions to these connections by climate change and/or land use changes. To make predictions about future perturbations to rivers and riparian zones, studies like this, which considers the form and magnitude of subsidies, are needed to provide baseline information. Algal resources (e.g. epiphyton), macrophytes, riparian plants, terrestrial organisms and aquatic organisms all contributed to aquatic and terrestrial linkages in the Kowie River; therefore, it is important to conserve the different components of these ecosystems.
- Full Text:
- Date Issued: 2016
- Authors: Moyo, Sydney
- Date: 2016
- Language: English
- Type: text , Thesis , Doctoral , PhD
- Identifier: http://hdl.handle.net/10962/54427 , vital:26564
- Description: Rivers play a vital role in human livelihoods and are likely to undergo substantial alteration due to climate and land use changes from an increasing human population. Mitigating the pressures facing rivers in the world requires scientists and environmental managers to understand the ecological mechanisms, and ultimately the strength, of connections between ecosystems. This understanding of connections between adjacent habitats will enable environmental managers to predict the consequences of perturbing these linkages in the future. In this thesis, aquatic-terrestrial linkages in rivers were investigated using ecologically meaningful variables including abundances, biomasses, stable isotopes and fatty acids. This study is part of a larger project entitled “Connectivity through allochthony: reciprocal links between adjacent aquatic and terrestrial ecosystems in South Africa”, in which a team of researchers assessed a variety of pathways connecting riverine and estuarine systems to land within a catchment in the Eastern Cape, South Africa. I conceptualised the flow of energy within a temperate southern hemisphere river (the Kowie River) within theoretical models of energy flow such as the River Continuum Concept (RCC; presents lotic systems as being longitudinally linked with food webs in shaded headwaters being principally driven by allochthonous energy, with the addition of autochthonous food as a minor carbon source in the lower reaches) and the Riverine Productivity Model (RPM; proposes consumers derive most of their energy from local production of phytoplankton, benthic algae and aquatic plants, as well as directly from riparian zones via terrestrial leaf litter). Using the RCC as a starting point, I collected macroinvertebrates (September 2012 to May 2013) along a longitudinal gradient and grouped them into functional feeding groups (FFGs). The results revealed that gatherers and filterers dominated in the Kowie River, and together represented 50 – 83% of the invertebrate assemblages. There was a general paucity of shredders (relative abundance was ≤ 10% across all sites and seasons). The changes in relative abundances of different FFGs did not follow predictions of the RCC along the longitudinal gradient, as there were no correlations of community structure with some physical attributes (stream width, canopy cover, distance of river) that changed along the river continuum. However, FFG abundances were related to water velocity, total dissolved solids and canopy cover. Broadly, the Kowie River data showed that changes in relative abundances of FFGs along the river continuum could not be explained by changes in physical attributes alone, and may be highly influenced by the availability of food and the chemistry of the stream. Analysis of stable carbon (δ13C) and nitrogen (δ15N) isotopes was used to estimate the contributions of algal and land-based production to consumers over space (six sites) and time (November 2012 to September 2013). Carbon contributions determined by the use of mixing models (Stable Isotope Analysis in R) revealed that consumers in the headwater assimilated mainly terrestrially-derived organic matter, with consumers in the middle and lower reaches assimilating autochthonous basal resources (macrophytes and algae). The findings from this river supported aspects of the RCC (at the headwaters; terrestrial organic matter made up 41% of consumer diets), but overall the data supported the predictions of the RPM (local production made the highest contributions of 50 – 86% to all FFGs across all seasons). The carbon isotopes of consumers and their food sources changed substantially every season, indicating that samples of food sources and consumers should be analysed many times throughout the year to capture that variability and to ensure that ephemeral components of the food web are not missed. To validate the findings from the isotope data, fatty acids were used as complementary tracers to determine the contributions of algal versus terrestrial organic matter to the consumers. Fatty acid tracers for terrestrial (Ʃω3/Ʃω6; 18:2ω6; 18:3ω3) vs aquatic (Ʃω3/Ʃω6; 20:5ω3) sources corroborated the findings from the isotope data set, as the mean ratio of Ʃω3/Ʃω6 in consumers was less than one at the headwaters (indicating allochthony), while middle and lower reaches were associated with Ʃω3/Ʃω6 > 1 (indicating autochthony). In addition to the tracer and FFG analyses for examining trophic connections between land and river, the bidirectional exchange of organisms between the riparian zone and the river was assessed using floating pyramidal traps (to measure emergence) and pan traps (for infalling invertebrates) placed at different sites in the river and the biomass in each trap was determined. The exchanges were variable over space and time, with emergence peaking in summer (169 to 1402 mg m-2 day-1) and declining in winter (3 to 28 mg m-2 day-1). Similarly, infalling invertebrates increased in summer (413 to 679 mg m-2 day-1) and declined in winter (11 to 220 mg m-2 day-1). Biomass measurements are indications of quantity that ignore nutritional quality, so I determined the bidirectional flow of invertebrates using absolute concentrations of physiologically important biochemical compounds (essential and polyunsaturated fatty acids). The fluxes of emergent and infalling arthropods peaked in summer (emergence = 0.3 to 18 mg m-2 day-1 and terrestrial infall = 0.3 to 3 mg m-2 day-1) and declined in winter (emergence = 0.01 to 0.51 mg m-2 day-1 and terrestrial infall = 0.01 to 0.03 mg m-2 day-1). However, during some seasons, no significant differences in polyunsaturated fatty acid flux in either direction were observed; this finding indicated the balance of reciprocal subsidisation via reciprocal flows of animals. Factors such as air temperature and algal productivity affected the reciprocal flows between adjacent habitats, with algal productivity being positively related to emergence while air temperature was positively correlated to infalling terrestrial invertebrates. This research enhances the growing body of literature on the function of riverine systems and offers some invaluable information on the flow of energy and the role played by invertebrates in translocating nutrients from terrestrial systems to aquatic systems and vice versa. This study unifies the concepts of the RCC and RPM and shows that these concepts are not limited only to large rivers, but are applicable to small southern temperate rivers too. However, some tenets of the theoretical models were challenged. For example, it challenges the proposition by the RCC that the fine particulate organic matter leaked from upstream breakdown of coarse particulate organic matter is predominantly allochthonous. Additionally, this study showed that in the headwaters, the RPM underestimated the role of autochthony. Overall, the results showed that the Kowie River and its riparian area are intrinsically connected. Once we understand the mechanisms controlling connections and subsidies across ecotones, we can then start to predict the consequences of disruptions to these connections by climate change and/or land use changes. To make predictions about future perturbations to rivers and riparian zones, studies like this, which considers the form and magnitude of subsidies, are needed to provide baseline information. Algal resources (e.g. epiphyton), macrophytes, riparian plants, terrestrial organisms and aquatic organisms all contributed to aquatic and terrestrial linkages in the Kowie River; therefore, it is important to conserve the different components of these ecosystems.
- Full Text:
- Date Issued: 2016
Community structure and trophic ecology of shallow and deep rocky reefs in a well-established marine protected area
- Authors: Heyns, Elodie R
- Date: 2016
- Language: English
- Type: text , Thesis , Doctoral , PhD
- Identifier: http://hdl.handle.net/10962/54438 , vital:26565
- Description: The now formally adopted ecosystem approach to fisheries (EAF) considers not only commercially important species, but the entire ecosystem and the processes that support these species. A key component of EAF management is the implementation of no-take Marine Protected Areas (MPAs). Shallow water fish stocks are depleted and fishing effort is moving deeper and further offshore to keep up with demands. This situation calls for a detailed investigation of deep nearshore reefs to provide critical information relevant to policy uptake and management decisions regarding existing and new MPAs in terms of zonation and use. To address this need, the aim of this thesis was to investigate reefs that lie between 45 and 75 m and compare them in terms of community structure and function to the relatively well-studied shallow reefs that lie within SCUBA diving depth (<25 m). Ecological collections were made in the centre of a large and well-established MPA, Tsitsikamma National Park, to ensure that data represented non-anthropogenically impacted communities. Data were collected from two study sites; Rheeders Reef, (shallow reef) and Middlebank, a deep reef complex situated near the Storms River Mouth. The first step to address the aim of this study was to obtain baseline data on the distribution patterns of both the macrobenthic invertebrates and fish assemblages. Baseline data were obtained by underwater video methods and included the use of a remotely operated vehicle, baited remote underwater stereo-video systems (stereo-BRUVs) and traditional underwater camera equipment operated by SCUBA divers. To establish functional differences between the two study sites, fatty acid (FA) and stable isotope (SI) analyses were employed. These biomarker techniques provided insight into the importance of different sources of primary production, nutritional condition and species packing. From 360 photoquadrats examined for macrobenthic invertebrate distribution patterns, 161 invertebrates were identified that demonstrated a clear changeover of species along the depth gradient. Species richness was highest on the shallow reef and decreased with an increase in depth. To understand how the measured environmental variables impacted the macrobenthic assemblage data a LINKTREE analysis was performed. LINKTREEs produce hierarchical cluster analysis based on the macrobenthic assemblage data and provide a threshold of environmental variables that correspond to each cluster. The outcome of the LINKTREE analysis indicated that the changeover of species resulted in four distinct clusters, each cluster associated with a particular set of environmental variables that fell within a depth range. On the shallowest sites, the high energy environment resulting from wave action and surge prevented the settlement of suspended particles. The high energy environment of the shallow reef selected for low-growing encrusting species. High light intensities supported great abundances of benthic algae, and as light was lost with increasing depth, algal cover gradually diminished until it was completely absent on the deep reef. The reduced impact of surface wave action on the deep reef caused increased levels of settled suspended particles. The high levels of settled particles likely caused clogging of feeding parts of the encrusting species. Consequently, upright growth forms were more common in the lower energy environment of the deep reef. A total of 48 fish species were identified from 51 stereo-BRUVs samples. Fish assemblages differed significantly between the shallow and deep reefs. The shallowest sites were characterised by many small and juvenile fish species that fed at lower trophic levels. The deep reef supported the majority of the large predatory fish that fed at higher trophic levels. Many species demonstrated depth-related ontogenetic shifts in habitat use, and as such the deep reef hosted the majority of the sexually mature individuals. The fish assemblages also demonstrated a strong association with the macrobenthic clusters identified as habitat types by the LINKTREE analysis. The results from 201 FA and 191 SI samples provided information on specific feeding interactions, but more importantly shed some light on different processes that supported the shallow and deep reef communities. The shallow reef community was characterised by greater diversity of food sources, a pattern that could be explained by the presence of benthic algae and terrestrial inputs. Greater diversity of carbon sources at the bottom of the food web meant that a larger variety of species could be supported. Higher species richness increased the number of distinct taxa that performed similar functions, rendering the shallow reef more redundant and consequently more resilient to disturbance. In contrast, the deep reef demonstrated a food web supported mainly by pelagic production, which was more variable both over space and time. The deep reef was less redundant when compared to the shallow reef, as fewer species demonstrated similar trophic niches. These factors, in addition to the increased presence of sensitive calcareous macrobenthic species on the deep study site, rendered the deep reef more vulnerable to disturbance when compared to the shallow reef. Although the data presented here were from a single study area, the limitations typically associated with these inaccessible and challenging sampling environments made the dataset a significant contribution to the knowledge of reef ecosystems. The study addressed priority research questions for South Africa as identified during the National Biodiversity Assessment. The observable differences in structure, function and vulnerability point to the need for continued protection of our shallow reefs and offshore expansion of our MPA networks. Future research should determine if the patterns identified here are common throughout the Agulhas Ecoregion to provide managers with robust evidence for the extension our MPAs offshore.
- Full Text:
- Date Issued: 2016
- Authors: Heyns, Elodie R
- Date: 2016
- Language: English
- Type: text , Thesis , Doctoral , PhD
- Identifier: http://hdl.handle.net/10962/54438 , vital:26565
- Description: The now formally adopted ecosystem approach to fisheries (EAF) considers not only commercially important species, but the entire ecosystem and the processes that support these species. A key component of EAF management is the implementation of no-take Marine Protected Areas (MPAs). Shallow water fish stocks are depleted and fishing effort is moving deeper and further offshore to keep up with demands. This situation calls for a detailed investigation of deep nearshore reefs to provide critical information relevant to policy uptake and management decisions regarding existing and new MPAs in terms of zonation and use. To address this need, the aim of this thesis was to investigate reefs that lie between 45 and 75 m and compare them in terms of community structure and function to the relatively well-studied shallow reefs that lie within SCUBA diving depth (<25 m). Ecological collections were made in the centre of a large and well-established MPA, Tsitsikamma National Park, to ensure that data represented non-anthropogenically impacted communities. Data were collected from two study sites; Rheeders Reef, (shallow reef) and Middlebank, a deep reef complex situated near the Storms River Mouth. The first step to address the aim of this study was to obtain baseline data on the distribution patterns of both the macrobenthic invertebrates and fish assemblages. Baseline data were obtained by underwater video methods and included the use of a remotely operated vehicle, baited remote underwater stereo-video systems (stereo-BRUVs) and traditional underwater camera equipment operated by SCUBA divers. To establish functional differences between the two study sites, fatty acid (FA) and stable isotope (SI) analyses were employed. These biomarker techniques provided insight into the importance of different sources of primary production, nutritional condition and species packing. From 360 photoquadrats examined for macrobenthic invertebrate distribution patterns, 161 invertebrates were identified that demonstrated a clear changeover of species along the depth gradient. Species richness was highest on the shallow reef and decreased with an increase in depth. To understand how the measured environmental variables impacted the macrobenthic assemblage data a LINKTREE analysis was performed. LINKTREEs produce hierarchical cluster analysis based on the macrobenthic assemblage data and provide a threshold of environmental variables that correspond to each cluster. The outcome of the LINKTREE analysis indicated that the changeover of species resulted in four distinct clusters, each cluster associated with a particular set of environmental variables that fell within a depth range. On the shallowest sites, the high energy environment resulting from wave action and surge prevented the settlement of suspended particles. The high energy environment of the shallow reef selected for low-growing encrusting species. High light intensities supported great abundances of benthic algae, and as light was lost with increasing depth, algal cover gradually diminished until it was completely absent on the deep reef. The reduced impact of surface wave action on the deep reef caused increased levels of settled suspended particles. The high levels of settled particles likely caused clogging of feeding parts of the encrusting species. Consequently, upright growth forms were more common in the lower energy environment of the deep reef. A total of 48 fish species were identified from 51 stereo-BRUVs samples. Fish assemblages differed significantly between the shallow and deep reefs. The shallowest sites were characterised by many small and juvenile fish species that fed at lower trophic levels. The deep reef supported the majority of the large predatory fish that fed at higher trophic levels. Many species demonstrated depth-related ontogenetic shifts in habitat use, and as such the deep reef hosted the majority of the sexually mature individuals. The fish assemblages also demonstrated a strong association with the macrobenthic clusters identified as habitat types by the LINKTREE analysis. The results from 201 FA and 191 SI samples provided information on specific feeding interactions, but more importantly shed some light on different processes that supported the shallow and deep reef communities. The shallow reef community was characterised by greater diversity of food sources, a pattern that could be explained by the presence of benthic algae and terrestrial inputs. Greater diversity of carbon sources at the bottom of the food web meant that a larger variety of species could be supported. Higher species richness increased the number of distinct taxa that performed similar functions, rendering the shallow reef more redundant and consequently more resilient to disturbance. In contrast, the deep reef demonstrated a food web supported mainly by pelagic production, which was more variable both over space and time. The deep reef was less redundant when compared to the shallow reef, as fewer species demonstrated similar trophic niches. These factors, in addition to the increased presence of sensitive calcareous macrobenthic species on the deep study site, rendered the deep reef more vulnerable to disturbance when compared to the shallow reef. Although the data presented here were from a single study area, the limitations typically associated with these inaccessible and challenging sampling environments made the dataset a significant contribution to the knowledge of reef ecosystems. The study addressed priority research questions for South Africa as identified during the National Biodiversity Assessment. The observable differences in structure, function and vulnerability point to the need for continued protection of our shallow reefs and offshore expansion of our MPA networks. Future research should determine if the patterns identified here are common throughout the Agulhas Ecoregion to provide managers with robust evidence for the extension our MPAs offshore.
- Full Text:
- Date Issued: 2016
Predators of aerial insects and riparian cross-boundary trophic dynamics: web-building spiders, dragonflies and damselflies
- Authors: Chari, Lenin Dzibakwe
- Date: 2016
- Language: English
- Type: text , Thesis , Doctoral , PhD
- Identifier: http://hdl.handle.net/10962/55791 , vital:26734
- Description: This thesis characterises the cross-boundary trophic interactions of a relatively small model ecosystem, the Kowie River (Eastern Cape of South Africa), to explore their epistemic implications for systems ecology. Using web-building spiders and odonates (dragonflies and damselflies) as model organisms, I sought to investigate whether the diets of predators of aerial insects could be used to assess the strength of the trophic connectivity between freshwater and terrestrial systems in relation to variables such as stream width, distance from the river and aquatic insect emergence rates and abundances. Predator diet composition was determined by using a combination of diet analysis tools: direct observations of cross-subsidies, naturally-abundant stable (carbon and nitrogen) isotope analysis and fatty acid analysis. I also sought to reveal feeding niches and guilds among riparian aerial predators and investigate how the environment influenced predators’ access to aquatic prey subsidies. As emergent aquatic insect abundances decreased with an increase in distance from the river, and increased with stream width and seasonal changes from winter to summer, stable isotope and fatty acid analyses revealed distinct changes in web-building spider diet composition. Examination of the fatty acid eicosapentaenoic acid, a component commonly used as an indicator of consumer reliance on aquatic nutritional subsidies, showed that aquatic subsidies extended further inland at the wider sections of the river. Spiders and odonates at the wider sections of the Kowie River generally received more subsidies (56 – 70%) than those at the narrower sections (25 – 60%). When terrestrial insect biomass was distinctly low in winter, the benefit of aquatic subsidisation to spiders was relatively lower at the narrower sections of the Kowie River relative to the wide sections. As such, riparian areas adjacent to wide parts of the river were more likely to support larger populations of aerial predators than those at the narrow sections. Apart from the diet changes across time and space, there was evidence of inter-specific niche partitioning in both spiders and odonates, but no differences were observed between males and females of the same species. Results showed odonates of different sizes and hunting strategies had separate dietary niches, hence varied access to aquatic nutritional subsidies. The larger odonate taxa that frequently foraged mid-air had more varied diets and relied less on aquatic emergent insects than the smaller odonates that foraged from perches near the river. There was also evidence of niche partitioning amongst the spiders, as those that built horizontal webs captured more aquatic insects (40 – 78%) than the vertical orb-web builders (20 – 66%). This study showed that the nature and extent of trophic cross-boundary linkages in riparian areas largely depended on the availability of subsidies that varied seasonally and spatially. The width of the stream and seasonal variability emerged as important predictors of emergent insect abundances/biomasses that influenced predator feeding niches. The high mobility of odonates made their reliance on aquatic nutritional subsidies different from the less mobile spiders. The link between the width of the river and the extent of trophic connectivity has implications for riparian area management and definition of riparian buffer zones. However, the variation in diet niches amongst terrestrial consumers makes the results area-specific, and more studies are required that incorporate additional terrestrial predators in other fluvial systems so that we can make some generalizations on the dynamics of riparian trophic cross-boundary links.
- Full Text:
- Date Issued: 2016
- Authors: Chari, Lenin Dzibakwe
- Date: 2016
- Language: English
- Type: text , Thesis , Doctoral , PhD
- Identifier: http://hdl.handle.net/10962/55791 , vital:26734
- Description: This thesis characterises the cross-boundary trophic interactions of a relatively small model ecosystem, the Kowie River (Eastern Cape of South Africa), to explore their epistemic implications for systems ecology. Using web-building spiders and odonates (dragonflies and damselflies) as model organisms, I sought to investigate whether the diets of predators of aerial insects could be used to assess the strength of the trophic connectivity between freshwater and terrestrial systems in relation to variables such as stream width, distance from the river and aquatic insect emergence rates and abundances. Predator diet composition was determined by using a combination of diet analysis tools: direct observations of cross-subsidies, naturally-abundant stable (carbon and nitrogen) isotope analysis and fatty acid analysis. I also sought to reveal feeding niches and guilds among riparian aerial predators and investigate how the environment influenced predators’ access to aquatic prey subsidies. As emergent aquatic insect abundances decreased with an increase in distance from the river, and increased with stream width and seasonal changes from winter to summer, stable isotope and fatty acid analyses revealed distinct changes in web-building spider diet composition. Examination of the fatty acid eicosapentaenoic acid, a component commonly used as an indicator of consumer reliance on aquatic nutritional subsidies, showed that aquatic subsidies extended further inland at the wider sections of the river. Spiders and odonates at the wider sections of the Kowie River generally received more subsidies (56 – 70%) than those at the narrower sections (25 – 60%). When terrestrial insect biomass was distinctly low in winter, the benefit of aquatic subsidisation to spiders was relatively lower at the narrower sections of the Kowie River relative to the wide sections. As such, riparian areas adjacent to wide parts of the river were more likely to support larger populations of aerial predators than those at the narrow sections. Apart from the diet changes across time and space, there was evidence of inter-specific niche partitioning in both spiders and odonates, but no differences were observed between males and females of the same species. Results showed odonates of different sizes and hunting strategies had separate dietary niches, hence varied access to aquatic nutritional subsidies. The larger odonate taxa that frequently foraged mid-air had more varied diets and relied less on aquatic emergent insects than the smaller odonates that foraged from perches near the river. There was also evidence of niche partitioning amongst the spiders, as those that built horizontal webs captured more aquatic insects (40 – 78%) than the vertical orb-web builders (20 – 66%). This study showed that the nature and extent of trophic cross-boundary linkages in riparian areas largely depended on the availability of subsidies that varied seasonally and spatially. The width of the stream and seasonal variability emerged as important predictors of emergent insect abundances/biomasses that influenced predator feeding niches. The high mobility of odonates made their reliance on aquatic nutritional subsidies different from the less mobile spiders. The link between the width of the river and the extent of trophic connectivity has implications for riparian area management and definition of riparian buffer zones. However, the variation in diet niches amongst terrestrial consumers makes the results area-specific, and more studies are required that incorporate additional terrestrial predators in other fluvial systems so that we can make some generalizations on the dynamics of riparian trophic cross-boundary links.
- Full Text:
- Date Issued: 2016
The trophic ecology of waterbirds in a small temperate estuary: a stable isotope and lipid tracer approach
- Authors: Hean, Jeffrey William
- Date: 2016
- Language: English
- Type: text , Thesis , Doctoral , PhD
- Identifier: http://hdl.handle.net/10962/54356 , vital:26557
- Description: Waterbirds are often overlooked as predators in aquatic ecosystems, despite the fact that waterbirds congregate in great numbers in and around waterways, notably estuaries. To fully appreciate the effect that aquatic feeding waterbird species may have on aquatic prey communities and the role that they play in estuarine food webs, stable isotopes and fatty acid profiles were employed to examine the seasonal diet of selected waterbirds in the Kowie Estuary, Eastern Cape Province, South Africa. Population counts were conducted every month for four seasons to examine the demography of waterbirds in the lower reaches of the estuary. The mean monthly energy consumption, along with dry matter intake of all waterbird species observed, were calculated and compared to similar estuaries in South Africa and elsewhere. Three duck species, one migrant sandpiper and one piscivore were selected for more detailed investigation at several temporal scales. This thesis has revealed that stable isotope analysis of waterbird tissues provides more informative data than fatty acid analysis for investigating waterbird diet and basal resource-tertiary consumer nutrient coupling. Stable δ15N and δ13C isotopes from several body tissues, in conjunction with SIAR models, were used to determine the seasonal diet of each waterbird species, while fatty acid profiles were investigated to examine the trophic transfer of fatty acids from basal resources to waterbird predators via the benthic fauna. Stable isotopes revealed that Cape Shoveller, Cape Teal and Yellow-Billed Duck shifted their diet over both long and short temporal scales, while the migratory Ruff and piscivorous Little Egret maintained a relatively consistent diet over time. Isopods, amphipods, copepods and Mysidacea were the main foods of all three duck species and the Ruff (>30%). Little Egret fed mainly on flathead mullet throughout the year. Fatty acid analysis revealed evidence for trophic transfer of specific fatty acids from basal resources to waterbirds in the Kowie Estuary but provided little information on seasonal diet of waterbirds. Waterbirds foraging in the Kowie Estuary appeared to shift their diet to coincide with resource abundance pulses, but also displayed seasonal dietary overlap. This study highlights the role that waterbirds play in aquatic food webs. The subject requires more attention so that we can better understand all the predatory drivers on aquatic communities.
- Full Text:
- Date Issued: 2016
- Authors: Hean, Jeffrey William
- Date: 2016
- Language: English
- Type: text , Thesis , Doctoral , PhD
- Identifier: http://hdl.handle.net/10962/54356 , vital:26557
- Description: Waterbirds are often overlooked as predators in aquatic ecosystems, despite the fact that waterbirds congregate in great numbers in and around waterways, notably estuaries. To fully appreciate the effect that aquatic feeding waterbird species may have on aquatic prey communities and the role that they play in estuarine food webs, stable isotopes and fatty acid profiles were employed to examine the seasonal diet of selected waterbirds in the Kowie Estuary, Eastern Cape Province, South Africa. Population counts were conducted every month for four seasons to examine the demography of waterbirds in the lower reaches of the estuary. The mean monthly energy consumption, along with dry matter intake of all waterbird species observed, were calculated and compared to similar estuaries in South Africa and elsewhere. Three duck species, one migrant sandpiper and one piscivore were selected for more detailed investigation at several temporal scales. This thesis has revealed that stable isotope analysis of waterbird tissues provides more informative data than fatty acid analysis for investigating waterbird diet and basal resource-tertiary consumer nutrient coupling. Stable δ15N and δ13C isotopes from several body tissues, in conjunction with SIAR models, were used to determine the seasonal diet of each waterbird species, while fatty acid profiles were investigated to examine the trophic transfer of fatty acids from basal resources to waterbird predators via the benthic fauna. Stable isotopes revealed that Cape Shoveller, Cape Teal and Yellow-Billed Duck shifted their diet over both long and short temporal scales, while the migratory Ruff and piscivorous Little Egret maintained a relatively consistent diet over time. Isopods, amphipods, copepods and Mysidacea were the main foods of all three duck species and the Ruff (>30%). Little Egret fed mainly on flathead mullet throughout the year. Fatty acid analysis revealed evidence for trophic transfer of specific fatty acids from basal resources to waterbirds in the Kowie Estuary but provided little information on seasonal diet of waterbirds. Waterbirds foraging in the Kowie Estuary appeared to shift their diet to coincide with resource abundance pulses, but also displayed seasonal dietary overlap. This study highlights the role that waterbirds play in aquatic food webs. The subject requires more attention so that we can better understand all the predatory drivers on aquatic communities.
- Full Text:
- Date Issued: 2016
- «
- ‹
- 1
- ›
- »