A bulk and fraction-specific geochemical study of the origin of diverse high-grade hematitic iron ores from the Transvaal Supergroup, Northern Cape Province, South Africa
- Authors: Moloto, William
- Date: 2017
- Subjects: Iron ore -- South Africa -- Transvaal Supergroup , Hematite -- South Africa -- Transvaal Supergroup , Transvaal Supergroup (South Africa)
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: http://hdl.handle.net/10962/50546 , vital:25998
- Description: The Paleoproterozoic Transvaal Supergroup in the Northern Cape Province of South Africa is host to high-grade, Banded Iron Formation-hosted hematite iron-ore deposits and is the country’s most important source of iron to date. Previous studies suggest the origin of these iron ores to be ancient supergene, and that the ore forming process would have therefore pre-dated deposition of the basal Mapedi shales of the Olifansthoek Supergroup that unconformably overlies the Transvaal strata. The nature of the protolith to the ores has been suggested to be largely BIF of the Asbestos Hills Subgroup, and mainly the Kuruman BIF. The work presented in this thesis seeks to provide insights into the diversity of processes that are likely to have been involved during the genesis of these high-grade iron ores, in the context of constraining the pre-ore lithologies and the relative role of supergene-style, largely residual enrichment processes versus any possible metasomatic hydrothermal effects. This study had as primary focus the application of combined bulk and fraction-specific geochemical applications on representative iron-ore samples from four different localities in the Northern Cape Province, namely King/Khumani, Beeshoek, Heuninkranz and Hotazel. The collected samples show a variety of textures and also capture different pre-unconformity stratigraphic sections of BIF. The key objective was to assess whether the fraction-specific analytical results could provide any firm constraints for the origin of the ferrous and non-ferrous matrix fractions of the ores, namely whether they represent any combinations of protolith residue, allochtonously-introduced detritus or hydrothermally-derived material, and whether the results are comparable and consistent across all samples studied. In particular, constraints were sought as to whether the ore protolith was exclusively BIF or may potentially have contained at least a fraction of other lithologic types, such as shale; and whether there is sufficient evidence to support solely a supergene model for the ores or the data suggest other more epigenetic models of ore formation involving the action of hydrothermal fluids Bulk-rock geochemical analyses reveal the overwhelming dominance of Fe-oxide (as hematite) in all samples, at concentrations as high as 99 wt.% Fe2O3. Major and trace-element abundances of all samples were re-calculated assuming only iron addition from the postulated protolith (average BIF and shale), and the results revealed atypical enrichments in the iron ores by comparison to average BIF, and more shale-like relative abundances when normalised against the Post-Archaean Average Shale (PAAS). Specifically, BIF-normalised diagrams show relative enrichments by as much as 53-95% for Al2O3; 11-86% for TiO2; and 4-60% for P2O5. By contrast, PAAS-normalised values display enrichments of 1-3% for Al2O3, 0.2-3% for TiO2, and 3-13% for P2O5. Similar observations can be made for the greatest majority of trace elements when normalised against average BIF as compared to normalisation against PAAS. A suite of trace element that include alkali earths (e.g. Ba, Sr) and transition metals (e.g. Ni, Zn) show enrichments that are unrelated to the apparently detrital siliciclastic fraction of the ores, and are therefore linked to a possible hydrothermal input. Fraction-specific extractions were performed via the adaptation of existing dissolution protocols using oxalic acid (iron-oxide fraction) followed by HF digestion (silicate-fraction). The analyses of the produced aliquots using ICP-MS techniques, focused mainly on the REE abundances of the separated ferrous and non-ferrous matrix fractions and their comparisons to bulk-rock REE signatures. The results lend further support to the suggestion that the ore samples contain a predominant shale-like signal which does not directly compare to published REE signatures for supergene or hydrothermal BIF-hosted iron-ore deposits alike. The data therefore collectively point to a post-unconformity epigenetic hydrothermal event/s of iron ore-formation that would have exploited not only BIF but also shale as suitable pre-ore protolith.
- Full Text:
- Date Issued: 2017
- Authors: Moloto, William
- Date: 2017
- Subjects: Iron ore -- South Africa -- Transvaal Supergroup , Hematite -- South Africa -- Transvaal Supergroup , Transvaal Supergroup (South Africa)
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: http://hdl.handle.net/10962/50546 , vital:25998
- Description: The Paleoproterozoic Transvaal Supergroup in the Northern Cape Province of South Africa is host to high-grade, Banded Iron Formation-hosted hematite iron-ore deposits and is the country’s most important source of iron to date. Previous studies suggest the origin of these iron ores to be ancient supergene, and that the ore forming process would have therefore pre-dated deposition of the basal Mapedi shales of the Olifansthoek Supergroup that unconformably overlies the Transvaal strata. The nature of the protolith to the ores has been suggested to be largely BIF of the Asbestos Hills Subgroup, and mainly the Kuruman BIF. The work presented in this thesis seeks to provide insights into the diversity of processes that are likely to have been involved during the genesis of these high-grade iron ores, in the context of constraining the pre-ore lithologies and the relative role of supergene-style, largely residual enrichment processes versus any possible metasomatic hydrothermal effects. This study had as primary focus the application of combined bulk and fraction-specific geochemical applications on representative iron-ore samples from four different localities in the Northern Cape Province, namely King/Khumani, Beeshoek, Heuninkranz and Hotazel. The collected samples show a variety of textures and also capture different pre-unconformity stratigraphic sections of BIF. The key objective was to assess whether the fraction-specific analytical results could provide any firm constraints for the origin of the ferrous and non-ferrous matrix fractions of the ores, namely whether they represent any combinations of protolith residue, allochtonously-introduced detritus or hydrothermally-derived material, and whether the results are comparable and consistent across all samples studied. In particular, constraints were sought as to whether the ore protolith was exclusively BIF or may potentially have contained at least a fraction of other lithologic types, such as shale; and whether there is sufficient evidence to support solely a supergene model for the ores or the data suggest other more epigenetic models of ore formation involving the action of hydrothermal fluids Bulk-rock geochemical analyses reveal the overwhelming dominance of Fe-oxide (as hematite) in all samples, at concentrations as high as 99 wt.% Fe2O3. Major and trace-element abundances of all samples were re-calculated assuming only iron addition from the postulated protolith (average BIF and shale), and the results revealed atypical enrichments in the iron ores by comparison to average BIF, and more shale-like relative abundances when normalised against the Post-Archaean Average Shale (PAAS). Specifically, BIF-normalised diagrams show relative enrichments by as much as 53-95% for Al2O3; 11-86% for TiO2; and 4-60% for P2O5. By contrast, PAAS-normalised values display enrichments of 1-3% for Al2O3, 0.2-3% for TiO2, and 3-13% for P2O5. Similar observations can be made for the greatest majority of trace elements when normalised against average BIF as compared to normalisation against PAAS. A suite of trace element that include alkali earths (e.g. Ba, Sr) and transition metals (e.g. Ni, Zn) show enrichments that are unrelated to the apparently detrital siliciclastic fraction of the ores, and are therefore linked to a possible hydrothermal input. Fraction-specific extractions were performed via the adaptation of existing dissolution protocols using oxalic acid (iron-oxide fraction) followed by HF digestion (silicate-fraction). The analyses of the produced aliquots using ICP-MS techniques, focused mainly on the REE abundances of the separated ferrous and non-ferrous matrix fractions and their comparisons to bulk-rock REE signatures. The results lend further support to the suggestion that the ore samples contain a predominant shale-like signal which does not directly compare to published REE signatures for supergene or hydrothermal BIF-hosted iron-ore deposits alike. The data therefore collectively point to a post-unconformity epigenetic hydrothermal event/s of iron ore-formation that would have exploited not only BIF but also shale as suitable pre-ore protolith.
- Full Text:
- Date Issued: 2017
A stratigraphic, petrographic and geochemical study of the gamagara formation at the maremane dome, Northern Cape province, South Africa
- Authors: Cousins, David Patrick
- Date: 2017
- Subjects: Iron ores -- Geology -- South Africa -- Northern Cape , Geology -- South Africa -- Northern Cape , Mineralogy -- South Africa -- Northern Cape
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: http://hdl.handle.net/10962/4679 , vital:20711
- Description: Between 80 and 90 percent of the potential iron ore reserves in the Griqualand West basin in the Northern Cape province of South Africa is situated in the Asbesheuwels Iron-formation immediately below an unconformity that separates it from the Gamagara Formation of the Olifantshoek Supergroup. This extensive regional unconformity marks a lengthy period of non-deposition and erosion which preceded the deposition of the Gamagara Formation. Due to the nature of the intimate relationship between the shales and iron ore body, specifically on the Maremane dome, new insights into the Gamagara Formation were required. The thesis provides a renewed stratigraphic, petrographic and geochemical study on the Gamagara Formation and relates it to previous studies done on the lateral correlative Mapedi Formation, some 70 km north of the Maremane dome. The use of 10 newly available drill-cores selected from across the Maremane Dome allows for regional correlations to be made in a study which employs petrographic/mineralogical investigations using transmitted/reflected light microscopy, XRD and EPMA, complimented by traditional whole-rock geochemical analysis of majors, traces, rare earth elements and Nd isotopes. At the base of the Gamagara lie conglomerates representing an alluvial fan deposit, overlying this, shale and quartzite successions represent progradational delta lobes. The deltas are interpreted to be tide- dominated as indicated by a combination of features including: microbial mat growth, intertidal deposition in the delta top, sand bars and flaser laminations in the upward coarsening quartzite units of the delta front. Transgression is indicated by periodic transgressive lag deposits. A variety of sedimentary structures and textural features are described that can be interpreted as the results of microbial mat colonization on the sediment surface. Although in none of the described features can it irrefutably be proven that they are microbial mat deposits, the observed features are consistent with such an interpretation and should be considered indicators of possible microbial mat presence in the Gamagara Formation. Hydrothermal modifications are identified in various units of the Gamagara Formation and seem to occur as separate events. Basal white shales show mobility of Al and slight HFSE enrichments, while overlying red shales record HFSE, K and Fe enrichments. K-metasomatism has been known to occur in the underlying paleoweathering profile of the Transvaal Supergroup (Ongeluk lavas) a unit which is interpreted as the most likely provenance for the mid-to-upper shale lithofacies of the Gamagara Formation. Highly alkaline F-bearing brines had the ability to mobilize titania and fluorapatite, reset Nd isotope systematics and ultimately enriched HFSE concentrations in the red shales of the Gamagara Formation. As the same enrichment is evident in the Mapedi Formation, the event possibly represents unconformity related fluid flow on a regional scale (~140 km). Nd-isotopes record an isotopic disturbance concurrent with the HFSE enrichment and Tdm model ages suggest disruption (and enrichment) occurred between 1.73 and 1.86 Ga. Following this, Fe-addition occurred by epigenetic mechanisms similar to those of MVT-type deposits. Although gaps in the current understanding of the modifications of the Gamagara Formation exist, such events may have far reaching implications for the underlying iron ore bodies and the possibility arises that the genesis and/or epigenetic modification of the ore bodies of the Transvaal Supergroup may be casually linked to the same fluid-migration event/s.
- Full Text:
- Date Issued: 2017
- Authors: Cousins, David Patrick
- Date: 2017
- Subjects: Iron ores -- Geology -- South Africa -- Northern Cape , Geology -- South Africa -- Northern Cape , Mineralogy -- South Africa -- Northern Cape
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: http://hdl.handle.net/10962/4679 , vital:20711
- Description: Between 80 and 90 percent of the potential iron ore reserves in the Griqualand West basin in the Northern Cape province of South Africa is situated in the Asbesheuwels Iron-formation immediately below an unconformity that separates it from the Gamagara Formation of the Olifantshoek Supergroup. This extensive regional unconformity marks a lengthy period of non-deposition and erosion which preceded the deposition of the Gamagara Formation. Due to the nature of the intimate relationship between the shales and iron ore body, specifically on the Maremane dome, new insights into the Gamagara Formation were required. The thesis provides a renewed stratigraphic, petrographic and geochemical study on the Gamagara Formation and relates it to previous studies done on the lateral correlative Mapedi Formation, some 70 km north of the Maremane dome. The use of 10 newly available drill-cores selected from across the Maremane Dome allows for regional correlations to be made in a study which employs petrographic/mineralogical investigations using transmitted/reflected light microscopy, XRD and EPMA, complimented by traditional whole-rock geochemical analysis of majors, traces, rare earth elements and Nd isotopes. At the base of the Gamagara lie conglomerates representing an alluvial fan deposit, overlying this, shale and quartzite successions represent progradational delta lobes. The deltas are interpreted to be tide- dominated as indicated by a combination of features including: microbial mat growth, intertidal deposition in the delta top, sand bars and flaser laminations in the upward coarsening quartzite units of the delta front. Transgression is indicated by periodic transgressive lag deposits. A variety of sedimentary structures and textural features are described that can be interpreted as the results of microbial mat colonization on the sediment surface. Although in none of the described features can it irrefutably be proven that they are microbial mat deposits, the observed features are consistent with such an interpretation and should be considered indicators of possible microbial mat presence in the Gamagara Formation. Hydrothermal modifications are identified in various units of the Gamagara Formation and seem to occur as separate events. Basal white shales show mobility of Al and slight HFSE enrichments, while overlying red shales record HFSE, K and Fe enrichments. K-metasomatism has been known to occur in the underlying paleoweathering profile of the Transvaal Supergroup (Ongeluk lavas) a unit which is interpreted as the most likely provenance for the mid-to-upper shale lithofacies of the Gamagara Formation. Highly alkaline F-bearing brines had the ability to mobilize titania and fluorapatite, reset Nd isotope systematics and ultimately enriched HFSE concentrations in the red shales of the Gamagara Formation. As the same enrichment is evident in the Mapedi Formation, the event possibly represents unconformity related fluid flow on a regional scale (~140 km). Nd-isotopes record an isotopic disturbance concurrent with the HFSE enrichment and Tdm model ages suggest disruption (and enrichment) occurred between 1.73 and 1.86 Ga. Following this, Fe-addition occurred by epigenetic mechanisms similar to those of MVT-type deposits. Although gaps in the current understanding of the modifications of the Gamagara Formation exist, such events may have far reaching implications for the underlying iron ore bodies and the possibility arises that the genesis and/or epigenetic modification of the ore bodies of the Transvaal Supergroup may be casually linked to the same fluid-migration event/s.
- Full Text:
- Date Issued: 2017
Fraction-specific geochemistry across the Asbestos Hills BIF of the Transvaal Supergroup, South Africa: implications for the origin of BIF and the history of atmospheric oxygen
- Oonk, Paul Bernardus Hendrikus
- Authors: Oonk, Paul Bernardus Hendrikus
- Date: 2017
- Language: English
- Type: Thesis , Doctoral , PhD
- Identifier: http://hdl.handle.net/10962/50721 , vital:26021
- Description: Banded iron formations (BIF), deposited prior to and concurrent with the Great Oxidation Event (GOE) at ca. 2.4 Ga, record changes in oceanic and atmospheric chemistry during this critical time interval. Four previously unstudied drill-cores from the Griqualand West Basin, South Africa, capturing the rhythmically mesobanded, deep-water Kuruman BIF and the overlying granular, shallower Griquatown BIF, were sampled every ca. 10 m along core depth. Mineralogically, these BIFs consist of three iron-bearing fractions: (1) Fe-Ca-Mg-Mn carbonates, (2) magnetite with/without minor hematite and (3) Fe-silicates. These fractions are typically fine-grained on a sub-μm scale and their co-occurrence in varying amounts means that bulk-rock or microanalytical geochemical and stable isotope data are influenced by mineralogy.
- Full Text:
- Date Issued: 2017
- Authors: Oonk, Paul Bernardus Hendrikus
- Date: 2017
- Language: English
- Type: Thesis , Doctoral , PhD
- Identifier: http://hdl.handle.net/10962/50721 , vital:26021
- Description: Banded iron formations (BIF), deposited prior to and concurrent with the Great Oxidation Event (GOE) at ca. 2.4 Ga, record changes in oceanic and atmospheric chemistry during this critical time interval. Four previously unstudied drill-cores from the Griqualand West Basin, South Africa, capturing the rhythmically mesobanded, deep-water Kuruman BIF and the overlying granular, shallower Griquatown BIF, were sampled every ca. 10 m along core depth. Mineralogically, these BIFs consist of three iron-bearing fractions: (1) Fe-Ca-Mg-Mn carbonates, (2) magnetite with/without minor hematite and (3) Fe-silicates. These fractions are typically fine-grained on a sub-μm scale and their co-occurrence in varying amounts means that bulk-rock or microanalytical geochemical and stable isotope data are influenced by mineralogy.
- Full Text:
- Date Issued: 2017
Mineralogical and geochemical constraints on the origin, alteration history and metallogenic significance of the Manganore iron-formation, Northern Cape Province, South Africa
- Authors: Papadopoulos, Vlassis
- Date: 2017
- Subjects: Banded iron formation , Transvaal Supergroup (South Africa) , Groups (Stratigraphy) South Africa , Lithostratigraphy , Petrology South Africa , Geochemistry South Africa
- Language: English
- Type: text , Thesis , Masters , MSc
- Identifier: http://hdl.handle.net/10962/65189 , vital:28702
- Description: The Manganore iron-formation (MIF) of the Transvaal Supergroup is host to the most important high-grade iron ore bodies in South Africa. Prevailing models for ore genesis invoke supergene processes performing during a long period of erosion, oxidation and weathering under tropical lateritic conditions while the role of potential hydrothermal processes is not addressed. Lack of detailed petrographical and geochemical data necessitated reexamination of the MIF through new and existing drill core exploration material. Thorough petrographical investigation revealed a multi-event complex alteration history involving hydrothermal activity. Iron and silica mobility during alteration is demonstrated by a series of replacement, overprinting, crosscutting textures, extensive silicification and hematitization. Metasomatized textures such as pseudomorphs of primary magnetite, carbonate minerals and chert pods/lenses point to an alteration occurring in layer- controlled fronts and link stratigraphically the MIF to Kuruman and Griquatown iron- formations. Whole-rock geochemical data verify textural observations suggesting strong enrichment of iron or silica in meter-scale horizons, expressed by different generations of quartz and hematite. High-grade iron ore is highly enriched in TiO2 and Al2O3 compared to the protolith while both BIF and iron ore display highly increased concentrations of trace elements (transition metals and HFSE). Oxygen isotopes from different quartz textures reveal little to none isotopic exchangement during alteration whereas O isotopes from hematite are in concert to values from literature and suggest two different generations of hematite. A total of 20 minerals apart from quartz and hematite were documented. An earlier alkali/HFSE alteration event that is believed to have affected the overlying Gamagara shales is recorded in the BIF by the presence of muscovite, apatite, rutile, zircon and xenotime. A later and possibly ongoing event of succeeding hydrothermal pulses involves mainly sulphates (gypsum, baryte, celestine), pyrite, carbonates (siderite, calcite) and silicates (berthierine and tourmaline). Alkali-bearing brines persistently exploit the BIF mainly through karstification-related secondary porosity, are evidently carrying iron and are proposed to participate in or control the iron enrichment by facilitating removal of silica. The source of metals, sulfur and carbon is attributed to the underlying Campbellrand dolomites and especially to the upper Gamogaan Formation. The unconformable contact between BIF and the overlying shales is suggested as a suitable fluid conduit for the development of the observed BIF and shale-derived high-grade hematite iron ore.
- Full Text:
- Date Issued: 2017
- Authors: Papadopoulos, Vlassis
- Date: 2017
- Subjects: Banded iron formation , Transvaal Supergroup (South Africa) , Groups (Stratigraphy) South Africa , Lithostratigraphy , Petrology South Africa , Geochemistry South Africa
- Language: English
- Type: text , Thesis , Masters , MSc
- Identifier: http://hdl.handle.net/10962/65189 , vital:28702
- Description: The Manganore iron-formation (MIF) of the Transvaal Supergroup is host to the most important high-grade iron ore bodies in South Africa. Prevailing models for ore genesis invoke supergene processes performing during a long period of erosion, oxidation and weathering under tropical lateritic conditions while the role of potential hydrothermal processes is not addressed. Lack of detailed petrographical and geochemical data necessitated reexamination of the MIF through new and existing drill core exploration material. Thorough petrographical investigation revealed a multi-event complex alteration history involving hydrothermal activity. Iron and silica mobility during alteration is demonstrated by a series of replacement, overprinting, crosscutting textures, extensive silicification and hematitization. Metasomatized textures such as pseudomorphs of primary magnetite, carbonate minerals and chert pods/lenses point to an alteration occurring in layer- controlled fronts and link stratigraphically the MIF to Kuruman and Griquatown iron- formations. Whole-rock geochemical data verify textural observations suggesting strong enrichment of iron or silica in meter-scale horizons, expressed by different generations of quartz and hematite. High-grade iron ore is highly enriched in TiO2 and Al2O3 compared to the protolith while both BIF and iron ore display highly increased concentrations of trace elements (transition metals and HFSE). Oxygen isotopes from different quartz textures reveal little to none isotopic exchangement during alteration whereas O isotopes from hematite are in concert to values from literature and suggest two different generations of hematite. A total of 20 minerals apart from quartz and hematite were documented. An earlier alkali/HFSE alteration event that is believed to have affected the overlying Gamagara shales is recorded in the BIF by the presence of muscovite, apatite, rutile, zircon and xenotime. A later and possibly ongoing event of succeeding hydrothermal pulses involves mainly sulphates (gypsum, baryte, celestine), pyrite, carbonates (siderite, calcite) and silicates (berthierine and tourmaline). Alkali-bearing brines persistently exploit the BIF mainly through karstification-related secondary porosity, are evidently carrying iron and are proposed to participate in or control the iron enrichment by facilitating removal of silica. The source of metals, sulfur and carbon is attributed to the underlying Campbellrand dolomites and especially to the upper Gamogaan Formation. The unconformable contact between BIF and the overlying shales is suggested as a suitable fluid conduit for the development of the observed BIF and shale-derived high-grade hematite iron ore.
- Full Text:
- Date Issued: 2017
Mineralogy and geochemistry of structurally-controlled metasomatic alteration of carbonate-rich manganese ore at Mamatwan Mine, Kalahari Manganese Field
- Authors: Harawa, Esau Tonderai
- Date: 2017
- Subjects: Metasomatism (Mineralogy) , Manganese ores -- Geology -- South Africa , Geology -- South Africa , Mamatwan Mine (South Africa)
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: http://hdl.handle.net/10962/4717 , vital:20715
- Description: The Kalahari Manganese Field (KMF) located in the Northern Cape Province about 700km south west of Johannesburg contains 80% of the world manganese ore reserves. Mamatwan Mine is hosted within the low grade Mamatwan type ore and is located in the southernmost tip of the KMF. This mine is an open pit mine which is divided into three benches namely the top cut, middle cut and bottom cut. These three benches are structurally controlled by faults which influence the overall grade of the manganese ore. This study is a follow up work to the previous two studies carried out at Wessels Mine and Mamatwan Mine by (Gutzmer and Beukes) in 1995 and 1996 respectively with regards to alteration processes around fault controlled systems in which they concluded that epithermal fluids caused local reduction and bleaching of ore followed by oxidation and carbonate leaching of manganese ore through ascending oxidized groundwater. Metasomatic activity around fault controlled systems is controlled by three main processes namely redistribution, enrichment and depletion. These processes are determined by mobility/immobility of elements from the fault which are introduced into the pre-existing braunite carbonate rich ore. Elements such as Ca, Mg, Si, Fe, C and Mn interact with pre-existing ore due to temperature, fluid pressure, physico-chemical property of fluid gradient. Structurally, faulting and folding contribute to the movement of elements as one end of the system gets depleted the other end of the system gets enriched and vice versa. To better understand this metasomatic activity, it is crucial to conduct mass balance studies of these elements. Grant (1986) introduced the isocon diagram which is a modification of Gresen’s equation (1967) to ascertain which elements are directly or indirectly related to alteration through enrichment and depletion of Ca, Mg, Si, Fe, C and Mn. As the section approaches from altered to less altered manganese ore the mineral chemistry gradually changes from a manganese rich matrix composed of manganomelane and todorokite to a carbonate rich matrix composed of braunite, dolomite, kutnohorite and Mn-rich calcites.
- Full Text:
- Date Issued: 2017
- Authors: Harawa, Esau Tonderai
- Date: 2017
- Subjects: Metasomatism (Mineralogy) , Manganese ores -- Geology -- South Africa , Geology -- South Africa , Mamatwan Mine (South Africa)
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: http://hdl.handle.net/10962/4717 , vital:20715
- Description: The Kalahari Manganese Field (KMF) located in the Northern Cape Province about 700km south west of Johannesburg contains 80% of the world manganese ore reserves. Mamatwan Mine is hosted within the low grade Mamatwan type ore and is located in the southernmost tip of the KMF. This mine is an open pit mine which is divided into three benches namely the top cut, middle cut and bottom cut. These three benches are structurally controlled by faults which influence the overall grade of the manganese ore. This study is a follow up work to the previous two studies carried out at Wessels Mine and Mamatwan Mine by (Gutzmer and Beukes) in 1995 and 1996 respectively with regards to alteration processes around fault controlled systems in which they concluded that epithermal fluids caused local reduction and bleaching of ore followed by oxidation and carbonate leaching of manganese ore through ascending oxidized groundwater. Metasomatic activity around fault controlled systems is controlled by three main processes namely redistribution, enrichment and depletion. These processes are determined by mobility/immobility of elements from the fault which are introduced into the pre-existing braunite carbonate rich ore. Elements such as Ca, Mg, Si, Fe, C and Mn interact with pre-existing ore due to temperature, fluid pressure, physico-chemical property of fluid gradient. Structurally, faulting and folding contribute to the movement of elements as one end of the system gets depleted the other end of the system gets enriched and vice versa. To better understand this metasomatic activity, it is crucial to conduct mass balance studies of these elements. Grant (1986) introduced the isocon diagram which is a modification of Gresen’s equation (1967) to ascertain which elements are directly or indirectly related to alteration through enrichment and depletion of Ca, Mg, Si, Fe, C and Mn. As the section approaches from altered to less altered manganese ore the mineral chemistry gradually changes from a manganese rich matrix composed of manganomelane and todorokite to a carbonate rich matrix composed of braunite, dolomite, kutnohorite and Mn-rich calcites.
- Full Text:
- Date Issued: 2017
- «
- ‹
- 1
- ›
- »