The ultrastructure and computer-enhanced digital image analysis of plasmodesmata at the Kranz mesophyll-bundle sheath interface of Themeda triandra var. imberbis (Retz) A. Camus in conventionally-fixed leaf blades
- Botha, Christiaan E J, Hartley, B J, Cross, Robin H M
- Authors: Botha, Christiaan E J , Hartley, B J , Cross, Robin H M
- Date: 1993
- Language: English
- Type: Article
- Identifier: vital:6502 , http://hdl.handle.net/10962/d1005925
- Description: The ultrastructure of the plasmodesmata at the Kranz mesophyll-bundle sheath (KMS-BS) interface in Themeda triandra, and the substructures within the plasmodesmata were investigated, using conventionally fixed leaf-blade material, enhanced by the addition of 0.1% tannic acid to the primary fixative. Examination of high-resolution electronmicrographs, and computer-enhanced digital images suggests that these plasmodesmata are complex structures, comprised of helically-arranged particulate material. The electron-dense particles are between 2.5 and 3.0nm in diameter. These particles are specifically associated with the inner face of the inner plasmalemma membrane leaflet, and the outer region of the desmotubule wall. The electron-dense particles are presumably proteinaceous and embedded in a lipid matrix. In the constricted median portion of the KMS-BS plasmodesmata, the space between the desmotubule and the inner plasmalemma membrane leaflet and areas surrounding the proteinaceous particles thereof (the cytoplasmic sleeve) is about 3nm in cross-section, and constitutes what we believe to be the space through which intercellular transport takes place.
- Full Text: false
- Date Issued: 1993
- Authors: Botha, Christiaan E J , Hartley, B J , Cross, Robin H M
- Date: 1993
- Language: English
- Type: Article
- Identifier: vital:6502 , http://hdl.handle.net/10962/d1005925
- Description: The ultrastructure of the plasmodesmata at the Kranz mesophyll-bundle sheath (KMS-BS) interface in Themeda triandra, and the substructures within the plasmodesmata were investigated, using conventionally fixed leaf-blade material, enhanced by the addition of 0.1% tannic acid to the primary fixative. Examination of high-resolution electronmicrographs, and computer-enhanced digital images suggests that these plasmodesmata are complex structures, comprised of helically-arranged particulate material. The electron-dense particles are between 2.5 and 3.0nm in diameter. These particles are specifically associated with the inner face of the inner plasmalemma membrane leaflet, and the outer region of the desmotubule wall. The electron-dense particles are presumably proteinaceous and embedded in a lipid matrix. In the constricted median portion of the KMS-BS plasmodesmata, the space between the desmotubule and the inner plasmalemma membrane leaflet and areas surrounding the proteinaceous particles thereof (the cytoplasmic sleeve) is about 3nm in cross-section, and constitutes what we believe to be the space through which intercellular transport takes place.
- Full Text: false
- Date Issued: 1993