Connectivity through allochthony: Reciprocal links between adjacent aquatic and terrestrial ecosystems in South Africa
- Richoux, Nicole B, Moyo, Sydney, Chari, Lenin D, Bergamino, Leandro, Carassou, Laure, Dalu, Tatenda, Hean, Jeffrey W, Sikutshwa, Likho, Gininda, Simphiwe, Magoro, Mandla L, Perhar, Gurbir, Ni, Felicity, Villet, Martin H, Whitfield, Alan K, Parker, Daniel M, Froneman, P William, Arhonditsis, George, Craig, Adrian J F K
- Authors: Richoux, Nicole B , Moyo, Sydney , Chari, Lenin D , Bergamino, Leandro , Carassou, Laure , Dalu, Tatenda , Hean, Jeffrey W , Sikutshwa, Likho , Gininda, Simphiwe , Magoro, Mandla L , Perhar, Gurbir , Ni, Felicity , Villet, Martin H , Whitfield, Alan K , Parker, Daniel M , Froneman, P William , Arhonditsis, George , Craig, Adrian J F K
- Date: 2015
- Subjects: To be catalogued
- Language: English
- Type: text , report
- Identifier: http://hdl.handle.net/10962/438363 , vital:73454 , ISBN 978-1-4312-0679-7 , https://wrcwebsite.azurewebsites.net/wp-content/uploads/mdocs/2186-1-15.pdf
- Description: An important aspect of the dynamics of nutrients and pollutants in natural systems is captured in the concept of allochthony, founded on the observation that nutrients and energy in a variety of forms are transferred between adjacent habitats, com-munities and ecosystems that are not routinely considered as connected. Different forms of nutrients and energy move across the conceptual boundaries of habitats via organisms’ activities or physical processes such as wind or water currents, and these transfers can represent important food subsidies. Such cross-partition ecolog-ical subsidies can augment the nutritional condition, biomass and biodiversity of communities, particularly where local production (or autochthony) alone may be inadequate to support local food webs. Furthermore, organic subsidies can influ-ence population dynamics, community interactions and ecosystem processes, and can represent dominant flux inputs in ecosystem budgets. Our intention was to ex-plore organic nutrient fluxes in relation to a primarily lotic (i.e. flowing) aquatic sys-tem at the scale of a hydrological catchment.
- Full Text:
- Authors: Richoux, Nicole B , Moyo, Sydney , Chari, Lenin D , Bergamino, Leandro , Carassou, Laure , Dalu, Tatenda , Hean, Jeffrey W , Sikutshwa, Likho , Gininda, Simphiwe , Magoro, Mandla L , Perhar, Gurbir , Ni, Felicity , Villet, Martin H , Whitfield, Alan K , Parker, Daniel M , Froneman, P William , Arhonditsis, George , Craig, Adrian J F K
- Date: 2015
- Subjects: To be catalogued
- Language: English
- Type: text , report
- Identifier: http://hdl.handle.net/10962/438363 , vital:73454 , ISBN 978-1-4312-0679-7 , https://wrcwebsite.azurewebsites.net/wp-content/uploads/mdocs/2186-1-15.pdf
- Description: An important aspect of the dynamics of nutrients and pollutants in natural systems is captured in the concept of allochthony, founded on the observation that nutrients and energy in a variety of forms are transferred between adjacent habitats, com-munities and ecosystems that are not routinely considered as connected. Different forms of nutrients and energy move across the conceptual boundaries of habitats via organisms’ activities or physical processes such as wind or water currents, and these transfers can represent important food subsidies. Such cross-partition ecolog-ical subsidies can augment the nutritional condition, biomass and biodiversity of communities, particularly where local production (or autochthony) alone may be inadequate to support local food webs. Furthermore, organic subsidies can influ-ence population dynamics, community interactions and ecosystem processes, and can represent dominant flux inputs in ecosystem budgets. Our intention was to ex-plore organic nutrient fluxes in relation to a primarily lotic (i.e. flowing) aquatic sys-tem at the scale of a hydrological catchment.
- Full Text:
Stable isotope evidence of food web connectivity by a top predatory fish (Argyrosomus japonicus: Sciaenidae: Teleostei) in the Kowie Estuary, South Africa
- Bergamino, Leandro, Dalu, Tatenda, Whitfield, Alan K, Carassou, Laure, Richoux, Nicole B
- Authors: Bergamino, Leandro , Dalu, Tatenda , Whitfield, Alan K , Carassou, Laure , Richoux, Nicole B
- Date: 2014
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/457322 , vital:75625 , xlink:href="https://doi.org/10.2989/1814232X.2014.923782"
- Description: In this study, food web connectivity within the Kowie Estuary on the south-east coast of South Africa was evidenced by the trophic behaviour of the predominantly piscivorous Argyrosomus japonicus. We examined stable isotopes of carbon (δ13C) and nitrogen (δ15N) in the dominant consumers (zooplankton, invertebrates and fishes) and food sources (particulate organic matter, epibionts and benthic microalgae) in the system. An SIAR (Stable Isotope Analysis in R) mixing model was used to interpret the possible food sources for this dominant top predatory fish. Small fishes and large epibenthic invertebrates dominated the diet of A. japonicus. Based on the contrasting diet of these prey fish and invertebrates, we propose that organic matter enters the predatory fish community via two major pathways: (1) a littoral pathway dominated by benthic microalgae production and epibionts, and (2) a channel pathway dominated by suspended particulate organic matter (including phytoplankton). We conclude that the highly mobile A. japonicus consumes both pelagic and benthic fauna from the littoral and channel zones of the estuary, thereby playing a key functional role in linking food webs. This dietary diversity may help explain the success of A. japonicus as a dominant top predator in the system, primarily by increasing the energy available to this species.
- Full Text:
- Authors: Bergamino, Leandro , Dalu, Tatenda , Whitfield, Alan K , Carassou, Laure , Richoux, Nicole B
- Date: 2014
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/457322 , vital:75625 , xlink:href="https://doi.org/10.2989/1814232X.2014.923782"
- Description: In this study, food web connectivity within the Kowie Estuary on the south-east coast of South Africa was evidenced by the trophic behaviour of the predominantly piscivorous Argyrosomus japonicus. We examined stable isotopes of carbon (δ13C) and nitrogen (δ15N) in the dominant consumers (zooplankton, invertebrates and fishes) and food sources (particulate organic matter, epibionts and benthic microalgae) in the system. An SIAR (Stable Isotope Analysis in R) mixing model was used to interpret the possible food sources for this dominant top predatory fish. Small fishes and large epibenthic invertebrates dominated the diet of A. japonicus. Based on the contrasting diet of these prey fish and invertebrates, we propose that organic matter enters the predatory fish community via two major pathways: (1) a littoral pathway dominated by benthic microalgae production and epibionts, and (2) a channel pathway dominated by suspended particulate organic matter (including phytoplankton). We conclude that the highly mobile A. japonicus consumes both pelagic and benthic fauna from the littoral and channel zones of the estuary, thereby playing a key functional role in linking food webs. This dietary diversity may help explain the success of A. japonicus as a dominant top predator in the system, primarily by increasing the energy available to this species.
- Full Text:
- «
- ‹
- 1
- ›
- »