Improved endoglucanase production and mycelial biomass of some ericoid fungi
- Adeoyo, Olusegun R, Pletschke, Brett I, Dames, Joanna F
- Authors: Adeoyo, Olusegun R , Pletschke, Brett I , Dames, Joanna F
- Date: 2017
- Language: English
- Type: article , text
- Identifier: http://hdl.handle.net/10962/61435 , vital:28026 , https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5209310/
- Description: Fungal species associated with ericaceous plant roots produce a number of enzymes and other bio-active metabolites in order to enhance survival of their host plants in natural environments. This study focussed on endoglucanase production from root associated ericoid mycorrhizal and dark septate endophytic fungal isolates. Out of the five fungal isolates screened, Leohumicola sp. (ChemRU330/PPRI 13195) had the highest relative enzyme activity and was tested along with isolates belonging to Hyloscyphaceae (EdRU083/PPRI 17284) and Leotiomycetes (EdRU002/PPRI 17261) for endoglucanase production under different pH and nutritional conditions that included: carbon sources, nitrogen sources and metal ions, at an optimum temperature of 28 °C. An optimal of pH 5.0 produced enzyme activity of 3.99, 2.18 and 4.31 (U/mg protein) for isolates EdRU083, EdRU002 and Leohumicola sp. respectively. Increased enzyme activities and improved mycelial biomass production were obtained in the presence of supplements such as potassium, sodium, glucose, maltose, cellobiose, tryptone and peptone. While NaFe-EDTA and Co2+ inhibited enzyme activity. The potential role of these fungi as a source of novel enzymes is an ongoing objective of this study.
- Full Text:
- Authors: Adeoyo, Olusegun R , Pletschke, Brett I , Dames, Joanna F
- Date: 2017
- Language: English
- Type: article , text
- Identifier: http://hdl.handle.net/10962/61435 , vital:28026 , https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5209310/
- Description: Fungal species associated with ericaceous plant roots produce a number of enzymes and other bio-active metabolites in order to enhance survival of their host plants in natural environments. This study focussed on endoglucanase production from root associated ericoid mycorrhizal and dark septate endophytic fungal isolates. Out of the five fungal isolates screened, Leohumicola sp. (ChemRU330/PPRI 13195) had the highest relative enzyme activity and was tested along with isolates belonging to Hyloscyphaceae (EdRU083/PPRI 17284) and Leotiomycetes (EdRU002/PPRI 17261) for endoglucanase production under different pH and nutritional conditions that included: carbon sources, nitrogen sources and metal ions, at an optimum temperature of 28 °C. An optimal of pH 5.0 produced enzyme activity of 3.99, 2.18 and 4.31 (U/mg protein) for isolates EdRU083, EdRU002 and Leohumicola sp. respectively. Increased enzyme activities and improved mycelial biomass production were obtained in the presence of supplements such as potassium, sodium, glucose, maltose, cellobiose, tryptone and peptone. While NaFe-EDTA and Co2+ inhibited enzyme activity. The potential role of these fungi as a source of novel enzymes is an ongoing objective of this study.
- Full Text:
Improved endoglucanase production and mycelial biomass of some ericoid fungi
- Adeoyo, Olusegun R, Pletschke, Brett I, Dames, Joanna F
- Authors: Adeoyo, Olusegun R , Pletschke, Brett I , Dames, Joanna F
- Date: 2017
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/440352 , vital:73776 , https://doi.org/10.1186/s13568-016-0312-y
- Description: Fungal species associated with ericaceous plant roots produce a number of enzymes and other bio-active metabolites in order to enhance survival of their host plants in natural environments. This study focussed on endoglucanase production from root associated ericoid mycorrhizal and dark septate endophytic fungal isolates. Out of the five fungal isolates screened, Leohumicola sp. (ChemRU330/PPRI 13195) had the highest relative enzyme activity and was tested along with isolates belonging to Hyloscyphaceae (EdRU083/PPRI 17284) and Leotiomycetes (EdRU002/PPRI 17261) for endoglucanase production under different pH and nutritional conditions that included: carbon sources, nitrogen sources and metal ions, at an optimum temperature of 28 °C. An optimal of pH 5.0 produced enzyme activity of 3.99, 2.18 and 4.31 (U/mg protein) for isolates EdRU083, EdRU002 and Leohumicola sp. respectively. Increased enzyme activities and improved mycelial biomass production were obtained in the presence of supplements such as potassium, sodium, glucose, maltose, cellobiose, tryptone and peptone. While NaFe-EDTA and Co2+ inhibited enzyme activity. The potential role of these fungi as a source of novel enzymes is an ongoing objective of this study.
- Full Text:
- Authors: Adeoyo, Olusegun R , Pletschke, Brett I , Dames, Joanna F
- Date: 2017
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/440352 , vital:73776 , https://doi.org/10.1186/s13568-016-0312-y
- Description: Fungal species associated with ericaceous plant roots produce a number of enzymes and other bio-active metabolites in order to enhance survival of their host plants in natural environments. This study focussed on endoglucanase production from root associated ericoid mycorrhizal and dark septate endophytic fungal isolates. Out of the five fungal isolates screened, Leohumicola sp. (ChemRU330/PPRI 13195) had the highest relative enzyme activity and was tested along with isolates belonging to Hyloscyphaceae (EdRU083/PPRI 17284) and Leotiomycetes (EdRU002/PPRI 17261) for endoglucanase production under different pH and nutritional conditions that included: carbon sources, nitrogen sources and metal ions, at an optimum temperature of 28 °C. An optimal of pH 5.0 produced enzyme activity of 3.99, 2.18 and 4.31 (U/mg protein) for isolates EdRU083, EdRU002 and Leohumicola sp. respectively. Increased enzyme activities and improved mycelial biomass production were obtained in the presence of supplements such as potassium, sodium, glucose, maltose, cellobiose, tryptone and peptone. While NaFe-EDTA and Co2+ inhibited enzyme activity. The potential role of these fungi as a source of novel enzymes is an ongoing objective of this study.
- Full Text:
Physiology and Spatio-temporal Relations of Nutrient Acquisition by Roots and Root Symbionts
- Valentine, Alex J, Kleinert, Aleysia, Thuynsma, Rochelle, Chimphango, Samson, Dames, Joanna F, Benedito, V A
- Authors: Valentine, Alex J , Kleinert, Aleysia , Thuynsma, Rochelle , Chimphango, Samson , Dames, Joanna F , Benedito, V A
- Date: 2017
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/448652 , vital:74749 , https://doi.org/10.1007/124_2016_11
- Description: Among the various functions of roots, nutrient acquisition (via soil uptake or through symbiotic relationships) is one of the most essential for land plants. Soil from natural and agricultural ecosystems may impede plant nutrient acquisition, by many factors such as mineral availabilities either in excess or deficient supply, depletion of organic matter, extreme variations in water supply, and many other physical and chemical features. In order to survive, plants need to undergo developmental and physiological mechanisms to cope with these extreme soil situations. Here we review how plants control nutrient acquisition by dynamically changing root architecture for improved soil space exploration, as well as altering cellular-level function for enhanced nutrient uptake, via apoplastic acidification, exudation of enzymes and metabolites (organic acids, secondary metabolites) and constantly changing the composition of transporters at the plasma membrane. These changes start with environmental cues which induce cell signaling and involve hormones and coordinated regulatory genes networks that drive the root’s developmental plasticity as well as the cell’s biochemical dynamics. Mutualistic root symbioses, such as mycorrhizae and rhizobial-induced nodulation, are also important to provide essential nutrients to the plant, which are tightly regulated in order to only occur at plant’s benefit. We also explore molecular mechanisms which roots have evolved to cope with nutritional, as well as other soil stresses, such as aluminium toxicity and heavy metals. Overall, understanding root dynamics under several environmental variables at different perspectives, from root architecture to biochemistry to genetic levels will allow us to better explore the spatial and temporal relations of roots with their mineral nutrient environment.
- Full Text:
- Authors: Valentine, Alex J , Kleinert, Aleysia , Thuynsma, Rochelle , Chimphango, Samson , Dames, Joanna F , Benedito, V A
- Date: 2017
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/448652 , vital:74749 , https://doi.org/10.1007/124_2016_11
- Description: Among the various functions of roots, nutrient acquisition (via soil uptake or through symbiotic relationships) is one of the most essential for land plants. Soil from natural and agricultural ecosystems may impede plant nutrient acquisition, by many factors such as mineral availabilities either in excess or deficient supply, depletion of organic matter, extreme variations in water supply, and many other physical and chemical features. In order to survive, plants need to undergo developmental and physiological mechanisms to cope with these extreme soil situations. Here we review how plants control nutrient acquisition by dynamically changing root architecture for improved soil space exploration, as well as altering cellular-level function for enhanced nutrient uptake, via apoplastic acidification, exudation of enzymes and metabolites (organic acids, secondary metabolites) and constantly changing the composition of transporters at the plasma membrane. These changes start with environmental cues which induce cell signaling and involve hormones and coordinated regulatory genes networks that drive the root’s developmental plasticity as well as the cell’s biochemical dynamics. Mutualistic root symbioses, such as mycorrhizae and rhizobial-induced nodulation, are also important to provide essential nutrients to the plant, which are tightly regulated in order to only occur at plant’s benefit. We also explore molecular mechanisms which roots have evolved to cope with nutritional, as well as other soil stresses, such as aluminium toxicity and heavy metals. Overall, understanding root dynamics under several environmental variables at different perspectives, from root architecture to biochemistry to genetic levels will allow us to better explore the spatial and temporal relations of roots with their mineral nutrient environment.
- Full Text:
Potential of entomopathogenic fungal isolates for Control of the soil-dwelling life stages of Thaumatotibia leucotreta Meyrick (Lepidoptera: Tortricidae) in citrus
- Coombes, Candice A, Hill, Martin P, Dames, Joanna F, Moore, Sean D
- Authors: Coombes, Candice A , Hill, Martin P , Dames, Joanna F , Moore, Sean D
- Date: 2017
- Language: English
- Type: article , text
- Identifier: http://hdl.handle.net/10962/59885 , vital:27684 , https://doi.org/10.4001/003.025.0235
- Description: Thaumatotibia leucotreta Meyrick (Lepidoptera: Tortricidae) is a key pest of citrus in South Africa. In addition to the fruit damage caused, export markets such as the United States, South Korea and China regulate T. leucotreta as a phytosanitary organism in addition to restricting the use of pesticides on exported fruit (Grout & Moore 2015; SA-DAFF 2015). The bulk of citrus in South Africa is exported (Citrus Growers' Association 2015). Thus, the control of T. leucotreta is crucial. Consequently, the citrus industry adopts a zero tolerance approach controlling the pest, being strongly reliant on integrated pest management (Moore & Hattingh 2012). Numerous control options are available, but are largely limited to use against the above-ground life stages of this pest: eggs, neonates and adults (Moore & Hattingh 2012; Grout & Moore 2015).
- Full Text:
- Authors: Coombes, Candice A , Hill, Martin P , Dames, Joanna F , Moore, Sean D
- Date: 2017
- Language: English
- Type: article , text
- Identifier: http://hdl.handle.net/10962/59885 , vital:27684 , https://doi.org/10.4001/003.025.0235
- Description: Thaumatotibia leucotreta Meyrick (Lepidoptera: Tortricidae) is a key pest of citrus in South Africa. In addition to the fruit damage caused, export markets such as the United States, South Korea and China regulate T. leucotreta as a phytosanitary organism in addition to restricting the use of pesticides on exported fruit (Grout & Moore 2015; SA-DAFF 2015). The bulk of citrus in South Africa is exported (Citrus Growers' Association 2015). Thus, the control of T. leucotreta is crucial. Consequently, the citrus industry adopts a zero tolerance approach controlling the pest, being strongly reliant on integrated pest management (Moore & Hattingh 2012). Numerous control options are available, but are largely limited to use against the above-ground life stages of this pest: eggs, neonates and adults (Moore & Hattingh 2012; Grout & Moore 2015).
- Full Text:
- «
- ‹
- 1
- ›
- »