The TPR2B domain of the Hsp70/Hsp90 organizing protein (Hop) may contribute towards its dimerization
- Longshaw, Victoria M, Stephens, Linda L, Daniel, Sheril, Blatch, Gregory L
- Authors: Longshaw, Victoria M , Stephens, Linda L , Daniel, Sheril , Blatch, Gregory L
- Date: 2009
- Language: English
- Type: Article
- Identifier: vital:6481 , http://hdl.handle.net/10962/d1006253 , http://dx.doi.org/10.2174/092986609787848162
- Description: The role of the TPR2B domain of Hop is as yet unknown. We have shown here by site directed mutagenesis and size exclusion chromatography for the first time that the TPR1 and TPR2B domains of Hop independently dimerized, and that the dimerization of TPR2B was not dependent on its predicted two-carboxylate clamp residues. Furthermore, our data indicated that the dimerization of Hop and its domains was not disrupted in the presence of Hsp70 and Hsp90 peptides.
- Full Text:
- Date Issued: 2009
The TPR2B domain of the Hsp70/Hsp90 organizing protein (Hop) may contribute towards its dimerization
- Authors: Longshaw, Victoria M , Stephens, Linda L , Daniel, Sheril , Blatch, Gregory L
- Date: 2009
- Language: English
- Type: Article
- Identifier: vital:6481 , http://hdl.handle.net/10962/d1006253 , http://dx.doi.org/10.2174/092986609787848162
- Description: The role of the TPR2B domain of Hop is as yet unknown. We have shown here by site directed mutagenesis and size exclusion chromatography for the first time that the TPR1 and TPR2B domains of Hop independently dimerized, and that the dimerization of TPR2B was not dependent on its predicted two-carboxylate clamp residues. Furthermore, our data indicated that the dimerization of Hop and its domains was not disrupted in the presence of Hsp70 and Hsp90 peptides.
- Full Text:
- Date Issued: 2009
Nuclear translocation of the phosphoprotein Hop (Hsp70/Hsp90 organizing protein) occurs under heat shock, and its proposed nuclear localization signal is involved in Hsp90 binding
- Daniel, Sheril, Bradley, Graeme, Longshaw, Victoria M, Söti, Csaba, Csermely, Peter, Blatch, Gregory L
- Authors: Daniel, Sheril , Bradley, Graeme , Longshaw, Victoria M , Söti, Csaba , Csermely, Peter , Blatch, Gregory L
- Date: 2008
- Language: English
- Type: Article
- Identifier: vital:6472 , http://hdl.handle.net/10962/d1005951 , http://dx.doi.org/10.1016/j.bbamcr.2008.01.014
- Description: The Hsp70–Hsp90 complex is implicated in the folding and regulation of numerous signaling proteins, and Hop, the Hsp70–Hsp90 Organizing Protein, facilitates the association of this multichaperone machinery. Phosphatase treatment of mouse cell extracts reduced the number of Hop isoforms compared to untreated extracts, providing the first direct evidence that Hop was phosphorylated in vivo. Furthermore, surface plasmon resonance (SPR) spectroscopy showed that a cdc2 kinase phosphorylation mimic of Hop had reduced affinity for Hsp90 binding. Hop was predominantly cytoplasmic, but translocated to the nucleus in response to heat shock. A putative bipartite nuclear localization signal (NLS) has been identified within the Hsp90-binding domain of Hop. Although substitution of residues within the major arm of this proposed NLS abolished Hop–Hsp90 interaction as determined by SPR, this was not sufficient to prevent the nuclear accumulation of Hop under leptomycin-B treatment and heat shock conditions. These results showed for the first time that the subcellular localization of Hop was stress regulated and that the major arm of the putative NLS was not directly important for nuclear translocation but was critical for Hop–Hsp90 association in vitro. We propose a model in which the association of Hop with Hsp90 and the phosphorylated status of Hop both play a role in the mechanism of nucleo-cytoplasmic shuttling of Hop.
- Full Text:
- Date Issued: 2008
- Authors: Daniel, Sheril , Bradley, Graeme , Longshaw, Victoria M , Söti, Csaba , Csermely, Peter , Blatch, Gregory L
- Date: 2008
- Language: English
- Type: Article
- Identifier: vital:6472 , http://hdl.handle.net/10962/d1005951 , http://dx.doi.org/10.1016/j.bbamcr.2008.01.014
- Description: The Hsp70–Hsp90 complex is implicated in the folding and regulation of numerous signaling proteins, and Hop, the Hsp70–Hsp90 Organizing Protein, facilitates the association of this multichaperone machinery. Phosphatase treatment of mouse cell extracts reduced the number of Hop isoforms compared to untreated extracts, providing the first direct evidence that Hop was phosphorylated in vivo. Furthermore, surface plasmon resonance (SPR) spectroscopy showed that a cdc2 kinase phosphorylation mimic of Hop had reduced affinity for Hsp90 binding. Hop was predominantly cytoplasmic, but translocated to the nucleus in response to heat shock. A putative bipartite nuclear localization signal (NLS) has been identified within the Hsp90-binding domain of Hop. Although substitution of residues within the major arm of this proposed NLS abolished Hop–Hsp90 interaction as determined by SPR, this was not sufficient to prevent the nuclear accumulation of Hop under leptomycin-B treatment and heat shock conditions. These results showed for the first time that the subcellular localization of Hop was stress regulated and that the major arm of the putative NLS was not directly important for nuclear translocation but was critical for Hop–Hsp90 association in vitro. We propose a model in which the association of Hop with Hsp90 and the phosphorylated status of Hop both play a role in the mechanism of nucleo-cytoplasmic shuttling of Hop.
- Full Text:
- Date Issued: 2008
Molecular chaperones in biology, medicine and protein biotechnology
- Boshoff, Aileen, Nicoll, William S, Hennessy, Fritha, Ludewig, M H, Daniel, Sheril, Modisakeng, Keoagile W, Shonhai, Addmore, McNamara, Caryn, Bradley, Graeme, Blatch, Gregory L
- Authors: Boshoff, Aileen , Nicoll, William S , Hennessy, Fritha , Ludewig, M H , Daniel, Sheril , Modisakeng, Keoagile W , Shonhai, Addmore , McNamara, Caryn , Bradley, Graeme , Blatch, Gregory L
- Date: 2004
- Language: English
- Type: Article
- Identifier: vital:6457 , http://hdl.handle.net/10962/d1004479
- Description: Molecular chaperones consist of several highly conserved families of proteins, many of which consist of heat shock proteins. The primary function of molecular chaperones is to facilitate the folding or refolding of proteins, and therefore they play an important role in diverse cellular processes including protein synthesis, protein translocation, and the refolding or degradation of proteins after cell stress. Cells are often exposed to different stressors, resulting in protein misfolding and aggregation. It is now well established that the levels of certain molecular chaperones are elevated during stress to provide protection to the cell. The focus of this review is on the impact of molecular chaperones in biology, medicine and protein biotechnology, and thus covers both fundamental and applied aspects of chaperone biology. Attention is paid to the functions and applications of molecular chaperones from bacterial and eukaryotic cells, focusing on the heat shock proteins 90 (Hsp90), 70 (Hsp70) and 40 (Hsp40) classes of chaperones, respectively. The role of these classes of chaperones in human diseases is discussed, as well as the parts played by chaperones produced by the causative agents of malaria and trypanosomiasis. Recent advances have seen the application of chaperones in improving the yields of a particular target protein in recombinant protein production. The prospects for the targeted use of molecular chaperones for the over-production of recombinant proteins is critically reviewed, and current research on these chaperones at Rhodes University is also discussed.
- Full Text:
- Date Issued: 2004
- Authors: Boshoff, Aileen , Nicoll, William S , Hennessy, Fritha , Ludewig, M H , Daniel, Sheril , Modisakeng, Keoagile W , Shonhai, Addmore , McNamara, Caryn , Bradley, Graeme , Blatch, Gregory L
- Date: 2004
- Language: English
- Type: Article
- Identifier: vital:6457 , http://hdl.handle.net/10962/d1004479
- Description: Molecular chaperones consist of several highly conserved families of proteins, many of which consist of heat shock proteins. The primary function of molecular chaperones is to facilitate the folding or refolding of proteins, and therefore they play an important role in diverse cellular processes including protein synthesis, protein translocation, and the refolding or degradation of proteins after cell stress. Cells are often exposed to different stressors, resulting in protein misfolding and aggregation. It is now well established that the levels of certain molecular chaperones are elevated during stress to provide protection to the cell. The focus of this review is on the impact of molecular chaperones in biology, medicine and protein biotechnology, and thus covers both fundamental and applied aspects of chaperone biology. Attention is paid to the functions and applications of molecular chaperones from bacterial and eukaryotic cells, focusing on the heat shock proteins 90 (Hsp90), 70 (Hsp70) and 40 (Hsp40) classes of chaperones, respectively. The role of these classes of chaperones in human diseases is discussed, as well as the parts played by chaperones produced by the causative agents of malaria and trypanosomiasis. Recent advances have seen the application of chaperones in improving the yields of a particular target protein in recombinant protein production. The prospects for the targeted use of molecular chaperones for the over-production of recombinant proteins is critically reviewed, and current research on these chaperones at Rhodes University is also discussed.
- Full Text:
- Date Issued: 2004
- «
- ‹
- 1
- ›
- »