A cytotoxic pentadecapeptide from a South African Didemnid tunicate
- Gallegos, D, Serrill, J, Parker-Nance, Shirley, Dorrington, Rosemary A, Ishmael, J, McPhail, Kerry L
- Authors: Gallegos, D , Serrill, J , Parker-Nance, Shirley , Dorrington, Rosemary A , Ishmael, J , McPhail, Kerry L
- Date: 2016
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/65935 , vital:28863 , https://doi.org/10.1055/s-0036-1596683
- Description: publisher version , The rate of discovery of new natural product chemical entities has plateaued, and unique populations of endemic, biologically diverse sessile marine organisms represent increasingly critical opportunities to discover new chemistry. Discovery of the mandelalides [1] as potent inhibitors of cancer cell growth from the new South African tunicate Lissoclinum mandelai is an example of the diverse suites of metabolites with potent biological activities that have been isolated from tunicates and other filter-feeding sessile marine organisms that house complex microbial consortia. Further investigation of archived and new tunicate collections from Algoa Bay, South Africa, has revealed a group of didemnid tunicates with an unusual gelatinous morphology similar to Lissoclinum mandelai. Using a bioassay-guided isolation approach, a new “gelatinous” species of the genus Didemnum has yielded a cytotoxic pentadecapeptide with a molecular mass of 1603.7688 Da, comprising fifteen residues including both proteinogenic and non-proteinogenic amino acids. The pure compound inhibited both HeLa cervical cancer and NCI-H460 non-small cell lung cancer cell lines when tested at 30 nM in preliminary assays against cells seeded at low densities. Inhibition of cancer cells at low starting density may be indicative of an anti-proliferative mechanism of action. The compound did not show antibacterial activity against Vibrio cholera. Didemnin B and its clinically approved analogue dehydrodidemnin B (plitidepsin, Aplidin®) [2, 3] are important macrocyclic depsipeptides from a didemnid tunicate. The pentadecapeptide reported here provides justification for our continued investigation of unique, endemic didemnid tunicates from South Africa as a source of new macrocyclic natural products with cytotoxic, anti-viral or antimicrobial activity. , We acknowledge the South African government for permission to collect the subject tunicate (Collection Permit No. 278 RES2013/43)
- Full Text: false
- Authors: Gallegos, D , Serrill, J , Parker-Nance, Shirley , Dorrington, Rosemary A , Ishmael, J , McPhail, Kerry L
- Date: 2016
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/65935 , vital:28863 , https://doi.org/10.1055/s-0036-1596683
- Description: publisher version , The rate of discovery of new natural product chemical entities has plateaued, and unique populations of endemic, biologically diverse sessile marine organisms represent increasingly critical opportunities to discover new chemistry. Discovery of the mandelalides [1] as potent inhibitors of cancer cell growth from the new South African tunicate Lissoclinum mandelai is an example of the diverse suites of metabolites with potent biological activities that have been isolated from tunicates and other filter-feeding sessile marine organisms that house complex microbial consortia. Further investigation of archived and new tunicate collections from Algoa Bay, South Africa, has revealed a group of didemnid tunicates with an unusual gelatinous morphology similar to Lissoclinum mandelai. Using a bioassay-guided isolation approach, a new “gelatinous” species of the genus Didemnum has yielded a cytotoxic pentadecapeptide with a molecular mass of 1603.7688 Da, comprising fifteen residues including both proteinogenic and non-proteinogenic amino acids. The pure compound inhibited both HeLa cervical cancer and NCI-H460 non-small cell lung cancer cell lines when tested at 30 nM in preliminary assays against cells seeded at low densities. Inhibition of cancer cells at low starting density may be indicative of an anti-proliferative mechanism of action. The compound did not show antibacterial activity against Vibrio cholera. Didemnin B and its clinically approved analogue dehydrodidemnin B (plitidepsin, Aplidin®) [2, 3] are important macrocyclic depsipeptides from a didemnid tunicate. The pentadecapeptide reported here provides justification for our continued investigation of unique, endemic didemnid tunicates from South Africa as a source of new macrocyclic natural products with cytotoxic, anti-viral or antimicrobial activity. , We acknowledge the South African government for permission to collect the subject tunicate (Collection Permit No. 278 RES2013/43)
- Full Text: false
Binding and entry of a non-enveloped T=4 insect RNA virus is triggered by alkaline pH
- Penkler, David L, Jiwaji, Meesbah, Domitrovic, Tatiana, Short, James R, Johnson, John E, Dorrington, Rosemary A
- Authors: Penkler, David L , Jiwaji, Meesbah , Domitrovic, Tatiana , Short, James R , Johnson, John E , Dorrington, Rosemary A
- Date: 2016
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/65995 , vital:28875 , https://doi.org/10.1016/j.virol.2016.08.028
- Description: publisher version , Tetraviruses are small, non-enveloped, RNA viruses that exclusively infect lepidopteran insects. Their particles comprise 240 copies of a single capsid protein precursor (CP), which undergoes autoproteolytic cleavage during maturation. The molecular mechanisms of capsid assembly and maturation are well understood, but little is known about the viral infectious lifecycle due to a lack of tissue culture cell lines that are susceptible to tetravirus infection. We show here that binding and entry of the alphatetravirus, Helicoverpa armigera stunt virus (HaSV), is triggered by alkaline pH. At pH 9.0, wild-type HaSV virus particles undergo conformational changes that induce membrane-lytic activity and binding to Spodoptera frugiperda Sf9 cells. Binding is followed by entry and infection, with virus replication complexes detected by immunofluorescence microscopy within 2 h post-infection and the CP after 12 h. HaSV particles produced in S. frugiperda Sf9 cells are infectious. Helicoverpa armigera larval virus biofeed assays showed that pre-treatment with the V-ATPase inhibitor, Bafilomycin A1, resulted in a 50% decrease in larval mortality and stunting, while incubation of virus particles at pH 9.0 prior to infection restored infectivity. Together, these data show that HaSV, and likely other tetraviruses, requires the alkaline environment of the lepidopteran larval midgut for binding and entry into host cells.
- Full Text: false
- Authors: Penkler, David L , Jiwaji, Meesbah , Domitrovic, Tatiana , Short, James R , Johnson, John E , Dorrington, Rosemary A
- Date: 2016
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/65995 , vital:28875 , https://doi.org/10.1016/j.virol.2016.08.028
- Description: publisher version , Tetraviruses are small, non-enveloped, RNA viruses that exclusively infect lepidopteran insects. Their particles comprise 240 copies of a single capsid protein precursor (CP), which undergoes autoproteolytic cleavage during maturation. The molecular mechanisms of capsid assembly and maturation are well understood, but little is known about the viral infectious lifecycle due to a lack of tissue culture cell lines that are susceptible to tetravirus infection. We show here that binding and entry of the alphatetravirus, Helicoverpa armigera stunt virus (HaSV), is triggered by alkaline pH. At pH 9.0, wild-type HaSV virus particles undergo conformational changes that induce membrane-lytic activity and binding to Spodoptera frugiperda Sf9 cells. Binding is followed by entry and infection, with virus replication complexes detected by immunofluorescence microscopy within 2 h post-infection and the CP after 12 h. HaSV particles produced in S. frugiperda Sf9 cells are infectious. Helicoverpa armigera larval virus biofeed assays showed that pre-treatment with the V-ATPase inhibitor, Bafilomycin A1, resulted in a 50% decrease in larval mortality and stunting, while incubation of virus particles at pH 9.0 prior to infection restored infectivity. Together, these data show that HaSV, and likely other tetraviruses, requires the alkaline environment of the lepidopteran larval midgut for binding and entry into host cells.
- Full Text: false
Expanding the host range of small insect RNA viruses: Providence virus (Carmotetraviridae) infects and replicates in a human tissue culture cell line
- Jiwaji, Meesbah, Short, James R, Dorrington, Rosemary A
- Authors: Jiwaji, Meesbah , Short, James R , Dorrington, Rosemary A
- Date: 2016
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/65979 , vital:28874 , https://doi.org/10.1099/jgv.0.000578
- Description: publisher version , Tetraviruses are small, positive (+ve)-sense ssRNA viruses that infect the midgut cells of lepidopteran larvae. Providence virus(PrV) is the only member of the family Carmotetraviridae (previously Tetraviridae). PrV particles exhibit the characteristic tetraviral T=4 icosahedral symmetry, but PrV is distinct from other tetraviruses with respect to genome organization and viral non-structural proteins. Currently, PrV is the only tetravirus known to infect and replicate in lepidopteran cell culture lines. In this report we demonstrate, using immunofluorescence microscopy, that PrV infects and replicates in a human tissue culture cell line (HeLa), producing infectious virus particles. We also provide evidence for PrV replication in vitro in insect, mammalian and plant cell-free systems. This study challenges the long-held view that tetraviruses have a narrow host range confined to one or a few lepidopteran species and highlights the need to consider the potential for apparently non-infectious viruses to be transferred to new hosts in the laboratory.
- Full Text: false
- Authors: Jiwaji, Meesbah , Short, James R , Dorrington, Rosemary A
- Date: 2016
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/65979 , vital:28874 , https://doi.org/10.1099/jgv.0.000578
- Description: publisher version , Tetraviruses are small, positive (+ve)-sense ssRNA viruses that infect the midgut cells of lepidopteran larvae. Providence virus(PrV) is the only member of the family Carmotetraviridae (previously Tetraviridae). PrV particles exhibit the characteristic tetraviral T=4 icosahedral symmetry, but PrV is distinct from other tetraviruses with respect to genome organization and viral non-structural proteins. Currently, PrV is the only tetravirus known to infect and replicate in lepidopteran cell culture lines. In this report we demonstrate, using immunofluorescence microscopy, that PrV infects and replicates in a human tissue culture cell line (HeLa), producing infectious virus particles. We also provide evidence for PrV replication in vitro in insect, mammalian and plant cell-free systems. This study challenges the long-held view that tetraviruses have a narrow host range confined to one or a few lepidopteran species and highlights the need to consider the potential for apparently non-infectious viruses to be transferred to new hosts in the laboratory.
- Full Text: false
Keeping it in the family: coevolution of latrunculid sponges and their dominant bacterial symbionts
- Matcher, Gwynneth F, Waterworth, Samantha C, Walmsley, Tara A, Matsatsa, Tendayi, Parker-Nance, Shirley, Davies-Coleman, Michael T, Dorrington, Rosemary A
- Authors: Matcher, Gwynneth F , Waterworth, Samantha C , Walmsley, Tara A , Matsatsa, Tendayi , Parker-Nance, Shirley , Davies-Coleman, Michael T , Dorrington, Rosemary A
- Date: 2016
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/65603 , vital:28818 , https://doi.org/10.1002/mbo3.417
- Description: publisher version , The Latrunculiidae are a family of cold water sponges known for their production of bioactive pyrroloiminoquinone alkaloids. Previously it was shown that the bacterial community associated with a Tsitsikamma sponge species comprises unusual bacterial taxa and is dominated by a novel Betaproteobacterium. Here, we have characterized the bacterial communities associated with six latrunculid species representing three genera (Tsitsikamma, Cyclacanthia, and Latrunculia) as well as a Mycale species, collected from Algoa Bay on the South African southeast coast. The bacterial communities of all seven sponge species were dominated by a single Betaproteobacterium operational taxonomic unit (OTU0.03), while a second OTU0.03 was dominant in the Mycale sp. The Betaproteobacteria OTUs from the different latrunculid sponges are closely related and their phylogenetic relationship follows that of their hosts. We propose that the latrunculid Betaproteobacteria OTUs are members of a specialized group of sponge symbionts that may have coevolved with their hosts. A single dominant Spirochaetae OTU0.03 was present in the Tsitsikamma and Cyclacanthia sponge species, but absent from the Latrunculia and Mycale sponges. This study sheds new light on the interactions between latrunculid sponges and their bacterial communities and may point to the potential involvement of dominant symbionts in the biosynthesis of the bioactive secondary metabolites. , This research was supported by a SARChI grant from the South African National Research Foundation (NRF, GUN: 87583) and the Rhodes University Sandisa Imbewu Programme. S. C. W. was supported by an NRF Innovation PhD Scholarship and a Rhodes University Henderson PhD Scholarship. T. A. W. was supported by PhD Fellowships from the NRF and the German Academic Exchange Service (DAAD)
- Full Text:
- Authors: Matcher, Gwynneth F , Waterworth, Samantha C , Walmsley, Tara A , Matsatsa, Tendayi , Parker-Nance, Shirley , Davies-Coleman, Michael T , Dorrington, Rosemary A
- Date: 2016
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/65603 , vital:28818 , https://doi.org/10.1002/mbo3.417
- Description: publisher version , The Latrunculiidae are a family of cold water sponges known for their production of bioactive pyrroloiminoquinone alkaloids. Previously it was shown that the bacterial community associated with a Tsitsikamma sponge species comprises unusual bacterial taxa and is dominated by a novel Betaproteobacterium. Here, we have characterized the bacterial communities associated with six latrunculid species representing three genera (Tsitsikamma, Cyclacanthia, and Latrunculia) as well as a Mycale species, collected from Algoa Bay on the South African southeast coast. The bacterial communities of all seven sponge species were dominated by a single Betaproteobacterium operational taxonomic unit (OTU0.03), while a second OTU0.03 was dominant in the Mycale sp. The Betaproteobacteria OTUs from the different latrunculid sponges are closely related and their phylogenetic relationship follows that of their hosts. We propose that the latrunculid Betaproteobacteria OTUs are members of a specialized group of sponge symbionts that may have coevolved with their hosts. A single dominant Spirochaetae OTU0.03 was present in the Tsitsikamma and Cyclacanthia sponge species, but absent from the Latrunculia and Mycale sponges. This study sheds new light on the interactions between latrunculid sponges and their bacterial communities and may point to the potential involvement of dominant symbionts in the biosynthesis of the bioactive secondary metabolites. , This research was supported by a SARChI grant from the South African National Research Foundation (NRF, GUN: 87583) and the Rhodes University Sandisa Imbewu Programme. S. C. W. was supported by an NRF Innovation PhD Scholarship and a Rhodes University Henderson PhD Scholarship. T. A. W. was supported by PhD Fellowships from the NRF and the German Academic Exchange Service (DAAD)
- Full Text:
Latrunculid sponges, their microbial communities and secondary metabolites: connecting conserved bacterial symbionts to pyrroloiminoquinone production
- Dorrington, Rosemary A, Hilliar, Storm Hannah, Kalinski, Jarmo-Charles J, Krause, Rui W M, McPhail, Kerry L, Parker-Nance, Shirley, Wlalmsley, Tara A, Waterworth, Samantha C
- Authors: Dorrington, Rosemary A , Hilliar, Storm Hannah , Kalinski, Jarmo-Charles J , Krause, Rui W M , McPhail, Kerry L , Parker-Nance, Shirley , Wlalmsley, Tara A , Waterworth, Samantha C
- Date: 2016
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/65915 , vital:28858 , https://doi.org/10.1055/s-0036-1596655
- Description: publisher version , The Latrunculiidae are cold water sponges known for their production of bioactive pyrroloiminoquinone alkaloids (e.g. makaluvamines, discorhabdins and tsitsikammamines). Since pyrroloiminoquinones have also been isolated from sponges belonging to other families, ascidians and microorganisms, the biosynthetic origin of these alkaloids in latrunculid sponges is likely microbial. This study focuses on the secondary metabolites produced by closely-related Tsitsikamma species and Cyclacanthia bellae, all latrunculid sponges endemic to Algoa Bay on the South African southeast coast. The sponges produced suites of related pyrroloiminoquinones, including tsitsikammine A and B, and discohabdin C and V, the combination and relative abundance of which is species-specific. Characterisation of the diversity of sponge-associated bacterial communities revealed the unprecedented conservation of two dominant bacterial species. The first, a Betaproteobacterium, is also found in other latrunculids and related sponge families, representing a novel clade of sponge endosymbionts that have co-evolved with their hosts. The second conserved bacterial symbiont is a spirochaete found only in Cyclacanthia and Tsitsikamma species that is likely to have been recruited from free-living spirochaetes in the environment. This study sheds new light on the interactions between latrunculid sponges, their dominant bacterial symbionts, and the potential involvement of these bacteria in pyrroloiminoquinone biosynthesis.
- Full Text: false
- Authors: Dorrington, Rosemary A , Hilliar, Storm Hannah , Kalinski, Jarmo-Charles J , Krause, Rui W M , McPhail, Kerry L , Parker-Nance, Shirley , Wlalmsley, Tara A , Waterworth, Samantha C
- Date: 2016
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/65915 , vital:28858 , https://doi.org/10.1055/s-0036-1596655
- Description: publisher version , The Latrunculiidae are cold water sponges known for their production of bioactive pyrroloiminoquinone alkaloids (e.g. makaluvamines, discorhabdins and tsitsikammamines). Since pyrroloiminoquinones have also been isolated from sponges belonging to other families, ascidians and microorganisms, the biosynthetic origin of these alkaloids in latrunculid sponges is likely microbial. This study focuses on the secondary metabolites produced by closely-related Tsitsikamma species and Cyclacanthia bellae, all latrunculid sponges endemic to Algoa Bay on the South African southeast coast. The sponges produced suites of related pyrroloiminoquinones, including tsitsikammine A and B, and discohabdin C and V, the combination and relative abundance of which is species-specific. Characterisation of the diversity of sponge-associated bacterial communities revealed the unprecedented conservation of two dominant bacterial species. The first, a Betaproteobacterium, is also found in other latrunculids and related sponge families, representing a novel clade of sponge endosymbionts that have co-evolved with their hosts. The second conserved bacterial symbiont is a spirochaete found only in Cyclacanthia and Tsitsikamma species that is likely to have been recruited from free-living spirochaetes in the environment. This study sheds new light on the interactions between latrunculid sponges, their dominant bacterial symbionts, and the potential involvement of these bacteria in pyrroloiminoquinone biosynthesis.
- Full Text: false
SEAmester – South Africa’s first class afloat
- Ansorge, Isabelle J, Brundrit, Geoff, Brundrit, Jean, Dorrington, Rosemary A, Fawcett, Sarah, Gammon, David, Henry, Tahlia, Hermes, Juliet, Hölscher, Beate, d’Hotman, Jethan, Meiklejohn, Ian, Morris, Tammy, Pinto, Izidine, Du Plessis, Marcel, Roman, Raymond, Saunders, Clinton, Shabangu, Fannie W, De Vos, Marc, Walker, David R, Louw, Gavin
- Authors: Ansorge, Isabelle J , Brundrit, Geoff , Brundrit, Jean , Dorrington, Rosemary A , Fawcett, Sarah , Gammon, David , Henry, Tahlia , Hermes, Juliet , Hölscher, Beate , d’Hotman, Jethan , Meiklejohn, Ian , Morris, Tammy , Pinto, Izidine , Du Plessis, Marcel , Roman, Raymond , Saunders, Clinton , Shabangu, Fannie W , De Vos, Marc , Walker, David R , Louw, Gavin
- Date: 2016
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/65539 , vital:28808 , https://doi.org/10.17159/sajs.2016/a0171
- Description: publisher version , From Introduction: Marine science is a highly competitive environment. The need to improve the cohort of South African postgraduates, who would be recognised both nationally and internationally for their scientific excellence, is crucial. It is possible to attract students early on in their careers to this discipline via cutting-edge science, technology and unique field experiences. Through the engagement of students with real-life experiences such as SEAmester, universities supporting marine science postgraduate degree programmes can attract a sustainable throughput of numerically proficient students. By achieving a more quantitative and experienced input into our postgraduate degree programmes, we will, as a scientific community, greatly improve our long-term capabilities to accurately measure, model and predict the impacts of current climate change scenarios. The short-term goal is to attract and establish a cohort of proficient marine and atmospheric science graduates who will contribute to filling the capacity needs of South African marine science as a whole. The SEAmester programme, by involving researchers from across all the relevant disciplines and tertiary institutions, provides an opportunity to build a network of collaborative teaching within the marine field. In doing so, these researchers will foster and strengthen new and current collaborations between historically white and black universities (Figure 1). The long-term objective of SEAmester is to build critical mass within the marine sciences to ensure sustained growth of human capacity in marine science in South Africa – aligning closely with the current DST Research and Development strategies and the Operation Phakisa Oceans Economy initiative.
- Full Text:
- Authors: Ansorge, Isabelle J , Brundrit, Geoff , Brundrit, Jean , Dorrington, Rosemary A , Fawcett, Sarah , Gammon, David , Henry, Tahlia , Hermes, Juliet , Hölscher, Beate , d’Hotman, Jethan , Meiklejohn, Ian , Morris, Tammy , Pinto, Izidine , Du Plessis, Marcel , Roman, Raymond , Saunders, Clinton , Shabangu, Fannie W , De Vos, Marc , Walker, David R , Louw, Gavin
- Date: 2016
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/65539 , vital:28808 , https://doi.org/10.17159/sajs.2016/a0171
- Description: publisher version , From Introduction: Marine science is a highly competitive environment. The need to improve the cohort of South African postgraduates, who would be recognised both nationally and internationally for their scientific excellence, is crucial. It is possible to attract students early on in their careers to this discipline via cutting-edge science, technology and unique field experiences. Through the engagement of students with real-life experiences such as SEAmester, universities supporting marine science postgraduate degree programmes can attract a sustainable throughput of numerically proficient students. By achieving a more quantitative and experienced input into our postgraduate degree programmes, we will, as a scientific community, greatly improve our long-term capabilities to accurately measure, model and predict the impacts of current climate change scenarios. The short-term goal is to attract and establish a cohort of proficient marine and atmospheric science graduates who will contribute to filling the capacity needs of South African marine science as a whole. The SEAmester programme, by involving researchers from across all the relevant disciplines and tertiary institutions, provides an opportunity to build a network of collaborative teaching within the marine field. In doing so, these researchers will foster and strengthen new and current collaborations between historically white and black universities (Figure 1). The long-term objective of SEAmester is to build critical mass within the marine sciences to ensure sustained growth of human capacity in marine science in South Africa – aligning closely with the current DST Research and Development strategies and the Operation Phakisa Oceans Economy initiative.
- Full Text:
South Africa in the Antarctic Circumnavigation Expedition: a multi-institutional and interdisciplinary scientific project
- Halo, Issufo, Dorrington, Rosemary A, Bornman, Thomas G, De Villiers, Stephanie, Fawcett, Sarah
- Authors: Halo, Issufo , Dorrington, Rosemary A , Bornman, Thomas G , De Villiers, Stephanie , Fawcett, Sarah
- Date: 2016
- Language: English
- Type: article
- Identifier: http://hdl.handle.net/10962/65428 , vital:28790 , https://doi.org/10.17159/sajs.2016/a0173
- Description: publisher version , The polar regions are more critically affected by climate change than any other region on our planet.1,2 On the Antarctic continent and in its surrounding oceans, the effects of climate change are likely to be dramatic,3 and include largescale catastrophic ice melt, loss of habitat and biodiversity, and global sea level rise. The ‘Southern Ocean’ refers to the region where Atlantic, Indian and Pacific Ocean waters come together to encircle Antarctica. These waters connect the different ocean basins by linking the shallow and deep limbs of the global ocean current system (‘overturning circulation’) and play a critical role in storing and distributing heat and carbon dioxide (CO2 ). The Southern Ocean thus regulates not only the climate of the Antarctic, but of the entire earth system.1,4 By extension, the capacity of the global ocean to ameliorate earth’s changing climate is strongly controlled by the Southern Ocean. Marine phytoplankton (microscopic plants inhabiting the sunlit upper ocean) convert CO2 (an inorganic form of carbon) dissolved in surface waters into organic carbon through photosynthesis. This organic carbon fuels upper trophic levels such as fish, mammals and birds, and a portion sinks into the deep ocean where it remains stored for hundreds to thousands of years. This mechanism, which lowers the atmospheric concentration of CO2 , is termed the ‘biological pump’.5 The efficiency of the global ocean’s biological pump is currently limited by the Southern Ocean, where the macronutrients (nitrate and phosphate) required for photosynthesis are never fully consumed in surface waters. In theory, increased consumption of these nutrients could drive higher organic carbon removal to the deep ocean, enhancing the oceanic uptake of atmospheric CO2 . Indeed, more complete consumption of Southern Ocean nutrients is a leading hypothesis for the decrease in atmospheric CO2 that characterised the ice ages.6 Despite the global importance of the Southern Ocean, knowledge of the controls on and interactions among the physical, chemical and biological processes operating in Antarctic ecosystems is limited, largely because of a scarcity of in-situ observational data, compounded by the challenge of integrating siloed scientific fields. Given predictions that diverse aspects of Southern Ocean physics and carbon biogeochemistry are likely to change in the coming decades, a transdisciplinary approach to studying Antarctic systems is critical.
- Full Text:
- Authors: Halo, Issufo , Dorrington, Rosemary A , Bornman, Thomas G , De Villiers, Stephanie , Fawcett, Sarah
- Date: 2016
- Language: English
- Type: article
- Identifier: http://hdl.handle.net/10962/65428 , vital:28790 , https://doi.org/10.17159/sajs.2016/a0173
- Description: publisher version , The polar regions are more critically affected by climate change than any other region on our planet.1,2 On the Antarctic continent and in its surrounding oceans, the effects of climate change are likely to be dramatic,3 and include largescale catastrophic ice melt, loss of habitat and biodiversity, and global sea level rise. The ‘Southern Ocean’ refers to the region where Atlantic, Indian and Pacific Ocean waters come together to encircle Antarctica. These waters connect the different ocean basins by linking the shallow and deep limbs of the global ocean current system (‘overturning circulation’) and play a critical role in storing and distributing heat and carbon dioxide (CO2 ). The Southern Ocean thus regulates not only the climate of the Antarctic, but of the entire earth system.1,4 By extension, the capacity of the global ocean to ameliorate earth’s changing climate is strongly controlled by the Southern Ocean. Marine phytoplankton (microscopic plants inhabiting the sunlit upper ocean) convert CO2 (an inorganic form of carbon) dissolved in surface waters into organic carbon through photosynthesis. This organic carbon fuels upper trophic levels such as fish, mammals and birds, and a portion sinks into the deep ocean where it remains stored for hundreds to thousands of years. This mechanism, which lowers the atmospheric concentration of CO2 , is termed the ‘biological pump’.5 The efficiency of the global ocean’s biological pump is currently limited by the Southern Ocean, where the macronutrients (nitrate and phosphate) required for photosynthesis are never fully consumed in surface waters. In theory, increased consumption of these nutrients could drive higher organic carbon removal to the deep ocean, enhancing the oceanic uptake of atmospheric CO2 . Indeed, more complete consumption of Southern Ocean nutrients is a leading hypothesis for the decrease in atmospheric CO2 that characterised the ice ages.6 Despite the global importance of the Southern Ocean, knowledge of the controls on and interactions among the physical, chemical and biological processes operating in Antarctic ecosystems is limited, largely because of a scarcity of in-situ observational data, compounded by the challenge of integrating siloed scientific fields. Given predictions that diverse aspects of Southern Ocean physics and carbon biogeochemistry are likely to change in the coming decades, a transdisciplinary approach to studying Antarctic systems is critical.
- Full Text:
Stromatolite microbial communities as a source of new bioactive secondary metabolites
- Flatt, P M, Damarjanan, C, Isamonger, E, Kalinski, Jarmo-Charles J, Dorrington, Rosemary A, McPhail, Kerry L
- Authors: Flatt, P M , Damarjanan, C , Isamonger, E , Kalinski, Jarmo-Charles J , Dorrington, Rosemary A , McPhail, Kerry L
- Date: 2016
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/65871 , vital:28851 , https://doi.org/10.1055/s-0036-1596638
- Description: publisher version , Stromatolites represent some of the earliest microbial communities on Earth. They are formed by accretion and precipitation of layered calcium carbonate structures that result from the metabolic activity of complex microbial communities and the geochemical conditions of their environment. Modern stromatolite communities include aerobic heterotrophs, sulphide-oxidizing bacteria, sulphate-reducing bacteria, fermentative bacteria and cyanobacteria. Phylogenetic analyses revealed the presence of new and known cyanobacterial taxa related to known producers of biologically active secondary metabolites in tufa stromatolites along the South African southeast coast [1]. Prompted us to investigate their potential for producing novel bioactive secondary metabolites. A series of three tide pools provided the opportunity to collect stromatolites along a vertical transect from pool A (highest elevation, low nitrogen input, fresh water), pool B (within high tide zone, brackish water) and pool C (within tidal zone). The microbial community in pool A is particularly distinct. Chemical extracts of stromatolites from different pools have been profiled by LC-MS/MS and the data subjected to molecular spectral networking using the GnPS platform [2] in order to establish the diversity and biological potential of the microbial metabolome that is being expressed within each of these microhabitats. Correlation of the phylogenetic and secondary metabolomic data is expected to guide the isolation of new natural products with biomedical relevance.
- Full Text: false
- Authors: Flatt, P M , Damarjanan, C , Isamonger, E , Kalinski, Jarmo-Charles J , Dorrington, Rosemary A , McPhail, Kerry L
- Date: 2016
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/65871 , vital:28851 , https://doi.org/10.1055/s-0036-1596638
- Description: publisher version , Stromatolites represent some of the earliest microbial communities on Earth. They are formed by accretion and precipitation of layered calcium carbonate structures that result from the metabolic activity of complex microbial communities and the geochemical conditions of their environment. Modern stromatolite communities include aerobic heterotrophs, sulphide-oxidizing bacteria, sulphate-reducing bacteria, fermentative bacteria and cyanobacteria. Phylogenetic analyses revealed the presence of new and known cyanobacterial taxa related to known producers of biologically active secondary metabolites in tufa stromatolites along the South African southeast coast [1]. Prompted us to investigate their potential for producing novel bioactive secondary metabolites. A series of three tide pools provided the opportunity to collect stromatolites along a vertical transect from pool A (highest elevation, low nitrogen input, fresh water), pool B (within high tide zone, brackish water) and pool C (within tidal zone). The microbial community in pool A is particularly distinct. Chemical extracts of stromatolites from different pools have been profiled by LC-MS/MS and the data subjected to molecular spectral networking using the GnPS platform [2] in order to establish the diversity and biological potential of the microbial metabolome that is being expressed within each of these microhabitats. Correlation of the phylogenetic and secondary metabolomic data is expected to guide the isolation of new natural products with biomedical relevance.
- Full Text: false
- «
- ‹
- 1
- ›
- »