Isolation, characterization and antiproliferative activity of new metabolites from the South African endemic red algal species Laurencia alfredensis
- Dziwornu, Godwin A, Caira, Mino R, de la Mare, Jo-Anne, Edkins, Adrienne L, Bolton, John J, Beukes, Denzil R, Sunassee, Suthananda N
- Authors: Dziwornu, Godwin A , Caira, Mino R , de la Mare, Jo-Anne , Edkins, Adrienne L , Bolton, John J , Beukes, Denzil R , Sunassee, Suthananda N
- Date: 2017
- Language: English
- Type: article , text
- Identifier: http://hdl.handle.net/10962/59963 , vital:27715 , https://doi:10.3390/molecules22040513
- Description: The marine red algae of the genus Laurencia have been widely studied for their structurally diverse and biologically active secondary metabolites. We report here the natural product investigation of the organic extract of a newly identified South African endemic species, Laurencia alfredensis. A sequence of column chromatography, preparative TLC and normal phase HPLC resulted in the isolation of eleven compounds comprising three labdane-type diterpenes (1-3), four polyether triterpenes (4-7), three cholestane-type ecdysteroids (8-10) and a glycolipid (11). Compounds 1-3, 5-8 and 10 have not previously been reported, while compound 9 is reported here for the first time from a natural source and the known compound 11 isolated for the first time from the genus Laurencia. The structural elucidation and the relative configuration assignments of the compounds were accomplished by extensive use of ID- and 2D-NMR, HR-ESI-MS, UV and IR spectroscopic techniques, while the absolute configuration of compound 1 was determined by single-crystal X-ray diffraction analysis. All compounds were evaluated against the MDA-MB-231 breast and HeLa cervical cancer cell lines. Compound 2 exhibited low micromolar antiproliferative activity (IC50 = 9.3 gM) against the triple negative breast carcinoma and compound 7 was similarly active (IC50 = 8.8 gM) against the cervical cancer cell line.
- Full Text:
- Authors: Dziwornu, Godwin A , Caira, Mino R , de la Mare, Jo-Anne , Edkins, Adrienne L , Bolton, John J , Beukes, Denzil R , Sunassee, Suthananda N
- Date: 2017
- Language: English
- Type: article , text
- Identifier: http://hdl.handle.net/10962/59963 , vital:27715 , https://doi:10.3390/molecules22040513
- Description: The marine red algae of the genus Laurencia have been widely studied for their structurally diverse and biologically active secondary metabolites. We report here the natural product investigation of the organic extract of a newly identified South African endemic species, Laurencia alfredensis. A sequence of column chromatography, preparative TLC and normal phase HPLC resulted in the isolation of eleven compounds comprising three labdane-type diterpenes (1-3), four polyether triterpenes (4-7), three cholestane-type ecdysteroids (8-10) and a glycolipid (11). Compounds 1-3, 5-8 and 10 have not previously been reported, while compound 9 is reported here for the first time from a natural source and the known compound 11 isolated for the first time from the genus Laurencia. The structural elucidation and the relative configuration assignments of the compounds were accomplished by extensive use of ID- and 2D-NMR, HR-ESI-MS, UV and IR spectroscopic techniques, while the absolute configuration of compound 1 was determined by single-crystal X-ray diffraction analysis. All compounds were evaluated against the MDA-MB-231 breast and HeLa cervical cancer cell lines. Compound 2 exhibited low micromolar antiproliferative activity (IC50 = 9.3 gM) against the triple negative breast carcinoma and compound 7 was similarly active (IC50 = 8.8 gM) against the cervical cancer cell line.
- Full Text:
Cytotoxic activity of marine sponge extracts from the sub-Antarctic Islands and the Southern Ocean
- Olsen, Elisabeth, De Cerf, Christopher, Dziwornu, Godwin A, Puccinelli, Eleonora, Parker-Nance, Shirley, Ansorge, Isabelle J, Samaai, Toufiek, Dingle, Laura M K, Edkins, Adrienne L, Sunassee, Suthananda N
- Authors: Olsen, Elisabeth , De Cerf, Christopher , Dziwornu, Godwin A , Puccinelli, Eleonora , Parker-Nance, Shirley , Ansorge, Isabelle J , Samaai, Toufiek , Dingle, Laura M K , Edkins, Adrienne L , Sunassee, Suthananda N
- Date: 2016
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/66300 , vital:28931 , https://doi.org/10.17159/sajs.2016/20160202
- Description: publisher version , Over the past 50 years, marine invertebrates, especially sponges, have proven to be a valuable source of new and/or bioactive natural products that have the potential to be further developed as lead compounds for pharmaceutical applications. Although marine benthic invertebrate communities occurring off the coast of South Africa have been explored for their biomedicinal potential, the natural product investigation of marine sponges from the sub-Antarctic Islands in the Southern Ocean for the presence of bioactive secondary metabolites has been relatively unexplored thus far. We report here the results for the biological screening of both aqueous and organic extracts prepared from nine specimens of eight species of marine sponges, collected from around Marion Island and the Prince Edward Islands in the Southern Ocean, for their cytotoxic activity against three cancer cell lines. The results obtained through this multidisciplinary collaborative research effort by exclusively South African institutions has provided an exciting opportunity to discover cytotoxic compounds from sub-Antarctic sponges, whilst contributing to our understanding of the biodiversity and geographic distributions of these cold-water invertebrates. Therefore, we acknowledge here the various contributions of the diverse scientific disciplines that played a pivotal role in providing the necessary platform for the future natural products chemistry investigation of these marine sponges from the sub- Antarctic Islands and the Southern Ocean. Significance: This study will contribute to understanding the biodiversity and geographic distributions of sponges in the Southern Ocean. This multidisciplinary project has enabled the investigation of marine sponges for the presence of cytotoxic compounds. Further investigation will lead to the isolation and identification of cytotoxic compounds present in the active sponge extracts. , University of Cape Town; South African Medical Research Council; National Research Foundation (South Africa); CANSA; Rhodes University; Department of Science and Technology; Department of Environmental Affairs; SANAP
- Full Text:
- Authors: Olsen, Elisabeth , De Cerf, Christopher , Dziwornu, Godwin A , Puccinelli, Eleonora , Parker-Nance, Shirley , Ansorge, Isabelle J , Samaai, Toufiek , Dingle, Laura M K , Edkins, Adrienne L , Sunassee, Suthananda N
- Date: 2016
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/66300 , vital:28931 , https://doi.org/10.17159/sajs.2016/20160202
- Description: publisher version , Over the past 50 years, marine invertebrates, especially sponges, have proven to be a valuable source of new and/or bioactive natural products that have the potential to be further developed as lead compounds for pharmaceutical applications. Although marine benthic invertebrate communities occurring off the coast of South Africa have been explored for their biomedicinal potential, the natural product investigation of marine sponges from the sub-Antarctic Islands in the Southern Ocean for the presence of bioactive secondary metabolites has been relatively unexplored thus far. We report here the results for the biological screening of both aqueous and organic extracts prepared from nine specimens of eight species of marine sponges, collected from around Marion Island and the Prince Edward Islands in the Southern Ocean, for their cytotoxic activity against three cancer cell lines. The results obtained through this multidisciplinary collaborative research effort by exclusively South African institutions has provided an exciting opportunity to discover cytotoxic compounds from sub-Antarctic sponges, whilst contributing to our understanding of the biodiversity and geographic distributions of these cold-water invertebrates. Therefore, we acknowledge here the various contributions of the diverse scientific disciplines that played a pivotal role in providing the necessary platform for the future natural products chemistry investigation of these marine sponges from the sub- Antarctic Islands and the Southern Ocean. Significance: This study will contribute to understanding the biodiversity and geographic distributions of sponges in the Southern Ocean. This multidisciplinary project has enabled the investigation of marine sponges for the presence of cytotoxic compounds. Further investigation will lead to the isolation and identification of cytotoxic compounds present in the active sponge extracts. , University of Cape Town; South African Medical Research Council; National Research Foundation (South Africa); CANSA; Rhodes University; Department of Science and Technology; Department of Environmental Affairs; SANAP
- Full Text:
- «
- ‹
- 1
- ›
- »