Breast cancer: current developments in molecular approaches to diagnosis and treatment
- de la Mare, Jo-Anne, Contu, Lara, Hunter, Morgan C, Moyo, Buhle, Sterrenberg, Jason N, Dhanani, Karim C H, Mutsvunguma, Lorraine Z, Edkins, Adrienne L
- Authors: de la Mare, Jo-Anne , Contu, Lara , Hunter, Morgan C , Moyo, Buhle , Sterrenberg, Jason N , Dhanani, Karim C H , Mutsvunguma, Lorraine Z , Edkins, Adrienne L
- Date: 2014
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/164819 , vital:41175 , DOI: 10.2174/15748928113086660046
- Description: Due to the high heterogeneity of breast cancers, numerous recent patents describe improved methods of detection and classification which promise better patient prognosis and treatment. In particular, there has been a shift towards more effective genetic screening to identify specific mutations associated with breast tumours, which may lead to “personalised medicine” with improved outcomes. Two challenging areas of breast cancer research involve the development of treatments for the highly aggressive triple negative breast cancer subtype as well as the chemotherapy-resistant cancer stem cell subpopulation. In addition, despite numerous recent advances in breast cancer treatment in woman, male breast cancer remains poorly understood and there are limited therapies available which are developed specifically for men. This review serves to report on important developments in the treatment of breast malignancies patented in the past two years as well as to highlight the current gaps in the field of breast cancer therapeutics and areas which require further study.
- Full Text:
- Authors: de la Mare, Jo-Anne , Contu, Lara , Hunter, Morgan C , Moyo, Buhle , Sterrenberg, Jason N , Dhanani, Karim C H , Mutsvunguma, Lorraine Z , Edkins, Adrienne L
- Date: 2014
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/164819 , vital:41175 , DOI: 10.2174/15748928113086660046
- Description: Due to the high heterogeneity of breast cancers, numerous recent patents describe improved methods of detection and classification which promise better patient prognosis and treatment. In particular, there has been a shift towards more effective genetic screening to identify specific mutations associated with breast tumours, which may lead to “personalised medicine” with improved outcomes. Two challenging areas of breast cancer research involve the development of treatments for the highly aggressive triple negative breast cancer subtype as well as the chemotherapy-resistant cancer stem cell subpopulation. In addition, despite numerous recent advances in breast cancer treatment in woman, male breast cancer remains poorly understood and there are limited therapies available which are developed specifically for men. This review serves to report on important developments in the treatment of breast malignancies patented in the past two years as well as to highlight the current gaps in the field of breast cancer therapeutics and areas which require further study.
- Full Text:
General structural and functional features of molecular chaperones:
- Edkins, Adrienne L, Boshoff, Aileen
- Authors: Edkins, Adrienne L , Boshoff, Aileen
- Date: 2014
- Language: English
- Type: text , book
- Identifier: http://hdl.handle.net/10962/164808 , vital:41174 , ISBN 978-94-007-7437-7 , DOI: 10.1007/978-94-007-7438-4_2
- Description: Molecular chaperones are a group of structurally diverse and highly conserved ubiquitous proteins. They play crucial roles in facilitating the correct folding of proteins in vivo by preventing protein aggregation or facilitating the appropriate folding and assembly of proteins. Heat shock proteins form the major class of molecular chaperones that are responsible for protein folding events in the cell. This is achieved by ATP-dependent (folding machines) or ATP-independent mechanisms (holders). Heat shock proteins are induced by a variety of stresses, besides heat shock. The large and varied heat shock protein class is categorised into several subfamilies based on their sizes in kDa namely, small Hsps (HSPB), Hsp40 (DNAJ), Hsp60 (HSPD/E; Chaperonins), Hsp70 (HSPA), Hsp90 (HSPC), and Hsp100.
- Full Text:
- Authors: Edkins, Adrienne L , Boshoff, Aileen
- Date: 2014
- Language: English
- Type: text , book
- Identifier: http://hdl.handle.net/10962/164808 , vital:41174 , ISBN 978-94-007-7437-7 , DOI: 10.1007/978-94-007-7438-4_2
- Description: Molecular chaperones are a group of structurally diverse and highly conserved ubiquitous proteins. They play crucial roles in facilitating the correct folding of proteins in vivo by preventing protein aggregation or facilitating the appropriate folding and assembly of proteins. Heat shock proteins form the major class of molecular chaperones that are responsible for protein folding events in the cell. This is achieved by ATP-dependent (folding machines) or ATP-independent mechanisms (holders). Heat shock proteins are induced by a variety of stresses, besides heat shock. The large and varied heat shock protein class is categorised into several subfamilies based on their sizes in kDa namely, small Hsps (HSPB), Hsp40 (DNAJ), Hsp60 (HSPD/E; Chaperonins), Hsp70 (HSPA), Hsp90 (HSPC), and Hsp100.
- Full Text:
Hsp90 binds directly to fibronectin (FN) and inhibition reduces the extracellular fibronectin matrix in breast cancer cells
- Hunter, Morgan C, O’Hagan, Kyle L, Kenyon, Amy, Dhanani, Karim C H, Prinsloo, Earl, Edkins, Adrienne L
- Authors: Hunter, Morgan C , O’Hagan, Kyle L , Kenyon, Amy , Dhanani, Karim C H , Prinsloo, Earl , Edkins, Adrienne L
- Date: 2014
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/431143 , vital:72748 , xlink:href="https://doi.org/10.1371/journal.pone.0086842"
- Description: Heat shock protein 90 (Hsp90) has been identified in the extracellular space and has been shown to chaperone a finite number of extracellular proteins involved in cell migration and invasion. We used chemical cross-linking and immunoprecipitation followed by tandem mass spectrometry (MS/MS) to isolate a complex containing Hsp90 and the matrix protein fibronectin (FN) from breast cancer cells. Further analysis showed direct binding of Hsp90 to FN using an in vitro co-immunoprecipitation assay, a solid phase binding assay and surface plasmon resonance (SPR) spectroscopy. Confocal microscopy showed regions of co-localisation of Hsp90 and FN in breast cancer cell lines. Exogenous Hsp90β was shown to increase the formation of extracellular FN matrix in the Hs578T cell line, whilst knockdown or inhibition of Hsp90 led to a reduction in the levels of both soluble and insoluble FN and could be partially rescued by addition of exogenous Hsp90β. Treatment of cells with novobiocin led to internalization of FN into vesicles that were positive for the presence of the lysosomal marker, LAMP-1. Taken together, the direct interaction between FN and Hsp90, as well as the decreased levels of both soluble and insoluble FN upon Hsp90 inhibition or knockdown, suggested that FN may be a new client protein for Hsp90 and that Hsp90 was involved in FN matrix assembly and/or stability. The identification of FN as a putative client protein of Hsp90 suggests a role for Hsp90 in FN matrix stability, which is important for a number of fundamental cellular processes including embryogenesis, wound healing, cell migration and metastasis.
- Full Text:
- Authors: Hunter, Morgan C , O’Hagan, Kyle L , Kenyon, Amy , Dhanani, Karim C H , Prinsloo, Earl , Edkins, Adrienne L
- Date: 2014
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/431143 , vital:72748 , xlink:href="https://doi.org/10.1371/journal.pone.0086842"
- Description: Heat shock protein 90 (Hsp90) has been identified in the extracellular space and has been shown to chaperone a finite number of extracellular proteins involved in cell migration and invasion. We used chemical cross-linking and immunoprecipitation followed by tandem mass spectrometry (MS/MS) to isolate a complex containing Hsp90 and the matrix protein fibronectin (FN) from breast cancer cells. Further analysis showed direct binding of Hsp90 to FN using an in vitro co-immunoprecipitation assay, a solid phase binding assay and surface plasmon resonance (SPR) spectroscopy. Confocal microscopy showed regions of co-localisation of Hsp90 and FN in breast cancer cell lines. Exogenous Hsp90β was shown to increase the formation of extracellular FN matrix in the Hs578T cell line, whilst knockdown or inhibition of Hsp90 led to a reduction in the levels of both soluble and insoluble FN and could be partially rescued by addition of exogenous Hsp90β. Treatment of cells with novobiocin led to internalization of FN into vesicles that were positive for the presence of the lysosomal marker, LAMP-1. Taken together, the direct interaction between FN and Hsp90, as well as the decreased levels of both soluble and insoluble FN upon Hsp90 inhibition or knockdown, suggested that FN may be a new client protein for Hsp90 and that Hsp90 was involved in FN matrix assembly and/or stability. The identification of FN as a putative client protein of Hsp90 suggests a role for Hsp90 in FN matrix stability, which is important for a number of fundamental cellular processes including embryogenesis, wound healing, cell migration and metastasis.
- Full Text:
Hsp90 binds directly to fibronectin (FN) and inhibition reduces the extracellular fibronectin matrix in breast cancer cells:
- Hunter, Morgan C, O’Hagan, Kyle L, Kenyon, Amy, Dhanani, Karim C H, Prinsloo, Earl, Edkins, Adrienne L
- Authors: Hunter, Morgan C , O’Hagan, Kyle L , Kenyon, Amy , Dhanani, Karim C H , Prinsloo, Earl , Edkins, Adrienne L
- Date: 2014
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/164841 , vital:41177 , DOI: 10.1371/journal.pone.0086842
- Description: Heat shock protein 90 (Hsp90) has been identified in the extracellular space and has been shown to chaperone a finite number of extracellular proteins involved in cell migration and invasion. We used chemical cross-linking and immunoprecipitation followed by tandem mass spectrometry (MS/MS) to isolate a complex containing Hsp90 and the matrix protein fibronectin (FN) from breast cancer cells.
- Full Text:
- Authors: Hunter, Morgan C , O’Hagan, Kyle L , Kenyon, Amy , Dhanani, Karim C H , Prinsloo, Earl , Edkins, Adrienne L
- Date: 2014
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/164841 , vital:41177 , DOI: 10.1371/journal.pone.0086842
- Description: Heat shock protein 90 (Hsp90) has been identified in the extracellular space and has been shown to chaperone a finite number of extracellular proteins involved in cell migration and invasion. We used chemical cross-linking and immunoprecipitation followed by tandem mass spectrometry (MS/MS) to isolate a complex containing Hsp90 and the matrix protein fibronectin (FN) from breast cancer cells.
- Full Text:
Real-time monitoring of 3T3-L1 preadipocyte differentiation using a commercially available electric cell-substrate impedance sensor system
- Kramer, Adam H, Joos-Vandewalle, Julia, Edkins, Adrienne L, Frost, Carminita L, Prinsloo, Earl
- Authors: Kramer, Adam H , Joos-Vandewalle, Julia , Edkins, Adrienne L , Frost, Carminita L , Prinsloo, Earl
- Date: 2014
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/431171 , vital:72751 , xlink:href="https://doi.org/10.1016/j.bbrc.2013.12.123"
- Description: Real-time analysis offers multiple benefits over traditional end point assays. Here, we present a method of monitoring the optimisation of the growth and differentiation of murine 3T3-L1 preadipocytes to adipocytes using the commercially available ACEA xCELLigence Real-Time Cell Analyser Single Plate (RTCA SP) system. Our findings indicate that the ACEA xCELLigence RTCA SP can reproducibly monitor the primary morphological changes in pre- and post-confluent 3T3-L1 fibroblasts induced to differentiate using insulin, dexamethasone, 3-isobutyl-1-methylxanthine and rosiglitazone; and may be a viable primary method of screening compounds for adipogenic factors.
- Full Text:
- Authors: Kramer, Adam H , Joos-Vandewalle, Julia , Edkins, Adrienne L , Frost, Carminita L , Prinsloo, Earl
- Date: 2014
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/431171 , vital:72751 , xlink:href="https://doi.org/10.1016/j.bbrc.2013.12.123"
- Description: Real-time analysis offers multiple benefits over traditional end point assays. Here, we present a method of monitoring the optimisation of the growth and differentiation of murine 3T3-L1 preadipocytes to adipocytes using the commercially available ACEA xCELLigence Real-Time Cell Analyser Single Plate (RTCA SP) system. Our findings indicate that the ACEA xCELLigence RTCA SP can reproducibly monitor the primary morphological changes in pre- and post-confluent 3T3-L1 fibroblasts induced to differentiate using insulin, dexamethasone, 3-isobutyl-1-methylxanthine and rosiglitazone; and may be a viable primary method of screening compounds for adipogenic factors.
- Full Text:
Real-time monitoring of 3T3-L1 preadipocyte differentiation using a commercially available electric cell-substrate impedance sensor system:
- Kramer, Adam H, Joos-Vandewalle, Julia, Edkins, Adrienne L, Frost, Carminita L, Prinsloo, Earl
- Authors: Kramer, Adam H , Joos-Vandewalle, Julia , Edkins, Adrienne L , Frost, Carminita L , Prinsloo, Earl
- Date: 2014
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/164830 , vital:41176 , DOI: 10.1016/j.bbrc.2013.12.123
- Description: Real-time analysis offers multiple benefits over traditional end point assays. Here, we present a method of monitoring the optimisation of the growth and differentiation of murine 3T3-L1 preadipocytes to adipocytes using the commercially available ACEA xCELLigence Real-Time Cell Analyser Single Plate (RTCA SP) system. Our findings indicate that the ACEA xCELLigence RTCA SP can reproducibly monitor the primary morphological changes in pre- and post-confluent 3T3-L1 fibroblasts induced to differentiate using insulin, dexamethasone, 3-isobutyl-1-methylxanthine and rosiglitazone; and may be a viable primary method of screening compounds for adipogenic factors.
- Full Text:
- Authors: Kramer, Adam H , Joos-Vandewalle, Julia , Edkins, Adrienne L , Frost, Carminita L , Prinsloo, Earl
- Date: 2014
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/164830 , vital:41176 , DOI: 10.1016/j.bbrc.2013.12.123
- Description: Real-time analysis offers multiple benefits over traditional end point assays. Here, we present a method of monitoring the optimisation of the growth and differentiation of murine 3T3-L1 preadipocytes to adipocytes using the commercially available ACEA xCELLigence Real-Time Cell Analyser Single Plate (RTCA SP) system. Our findings indicate that the ACEA xCELLigence RTCA SP can reproducibly monitor the primary morphological changes in pre- and post-confluent 3T3-L1 fibroblasts induced to differentiate using insulin, dexamethasone, 3-isobutyl-1-methylxanthine and rosiglitazone; and may be a viable primary method of screening compounds for adipogenic factors.
- Full Text:
Sequence and domain conservation of the coelacanth Hsp40 and Hsp90 chaperones suggests conservation of function
- Tastan Bishop, Özlem, Edkins, Adrienne L, Blatch, Gregory L
- Authors: Tastan Bishop, Özlem , Edkins, Adrienne L , Blatch, Gregory L
- Date: 2014
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/126932 , vital:35936 , https://doi.10.1002/jez.b.22541
- Description: Molecular chaperones and their associated co‐chaperones play an important role in preserving and regulating the active conformational state of cellular proteins. The chaperone complement of the Indonesian Coelacanth, Latimeria menadoensis, was elucidated using transcriptomic sequences. Heat shock protein 90 (Hsp90) and heat shock protein 40 (Hsp40) chaperones, and associated cochaperones were focused on, and homologous human sequences were used to search the sequence databases. Coelacanth homologs of the cytosolic, mitochondrial and endoplasmic reticulum (ER) homologs of human Hsp90 were identified, as well as all of the major co‐chaperones of the cytosolic isoform. Most of the human Hsp40s were found to have coelacanth homologs, and the data suggested that all of the chaperone machinery for protein folding at the ribosome, protein translocation to cellular compartments such as the ER and protein degradation were conserved. Some interesting similarities and differences were identified when interrogating human, mouse, and zebrafish homologs. For example, DnaJB13 is predicted to be a non‐functional Hsp40 in humans, mouse, and zebrafish due to a corrupted histidine‐proline‐aspartic acid (HPD) motif, while the coelacanth homolog has an intact HPD. These and other comparisons enabled important functional and evolutionary questions to be posed for future experimental studies.
- Full Text:
- Authors: Tastan Bishop, Özlem , Edkins, Adrienne L , Blatch, Gregory L
- Date: 2014
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/126932 , vital:35936 , https://doi.10.1002/jez.b.22541
- Description: Molecular chaperones and their associated co‐chaperones play an important role in preserving and regulating the active conformational state of cellular proteins. The chaperone complement of the Indonesian Coelacanth, Latimeria menadoensis, was elucidated using transcriptomic sequences. Heat shock protein 90 (Hsp90) and heat shock protein 40 (Hsp40) chaperones, and associated cochaperones were focused on, and homologous human sequences were used to search the sequence databases. Coelacanth homologs of the cytosolic, mitochondrial and endoplasmic reticulum (ER) homologs of human Hsp90 were identified, as well as all of the major co‐chaperones of the cytosolic isoform. Most of the human Hsp40s were found to have coelacanth homologs, and the data suggested that all of the chaperone machinery for protein folding at the ribosome, protein translocation to cellular compartments such as the ER and protein degradation were conserved. Some interesting similarities and differences were identified when interrogating human, mouse, and zebrafish homologs. For example, DnaJB13 is predicted to be a non‐functional Hsp40 in humans, mouse, and zebrafish due to a corrupted histidine‐proline‐aspartic acid (HPD) motif, while the coelacanth homolog has an intact HPD. These and other comparisons enabled important functional and evolutionary questions to be posed for future experimental studies.
- Full Text:
The networking of chaperones by co-chaperones: control of cellular protein homeostasis
- Edkins, Adrienne L, Blatch, Gregory L
- Authors: Edkins, Adrienne L , Blatch, Gregory L
- Date: 2014
- Language: English
- Type: text , book
- Identifier: http://hdl.handle.net/10962/165107 , vital:41209 , ISBN 978-3-319-11731-7
- Description: Co-chaperones are important mediators of the outcome of chaperone assisted protein homeostasis, which is a dynamic balance between the integrated processes of protein folding, degradation and translocation. The Networking of Chaperones by Co-chaperones describes how the function of the major molecular chaperones is regulated by a cohort of diverse non-client proteins, known as co-chaperones. The second edition includes the current status of the field and descriptions of a number of novel co-chaperones that have been recently identified. This new edition has a strong focus on the role of co-chaperones in human disease and as putative drug targets. The book will be a resource for both newcomers and established researchers in the field of cell stress and chaperones, as well as those interested in cross-cutting disciplines such as cellular networks and systems biology.
- Full Text:
- Authors: Edkins, Adrienne L , Blatch, Gregory L
- Date: 2014
- Language: English
- Type: text , book
- Identifier: http://hdl.handle.net/10962/165107 , vital:41209 , ISBN 978-3-319-11731-7
- Description: Co-chaperones are important mediators of the outcome of chaperone assisted protein homeostasis, which is a dynamic balance between the integrated processes of protein folding, degradation and translocation. The Networking of Chaperones by Co-chaperones describes how the function of the major molecular chaperones is regulated by a cohort of diverse non-client proteins, known as co-chaperones. The second edition includes the current status of the field and descriptions of a number of novel co-chaperones that have been recently identified. This new edition has a strong focus on the role of co-chaperones in human disease and as putative drug targets. The book will be a resource for both newcomers and established researchers in the field of cell stress and chaperones, as well as those interested in cross-cutting disciplines such as cellular networks and systems biology.
- Full Text:
- «
- ‹
- 1
- ›
- »