Metabolic activity throughout early development of dusky kob Argyrosomus japonicus (Sciaenidae)
- Edworthy, Carla, James, Nicola C, Erasmus, B, Kemp, Justin O G, Kaiser, Horst, Potts, Warren M
- Authors: Edworthy, Carla , James, Nicola C , Erasmus, B , Kemp, Justin O G , Kaiser, Horst , Potts, Warren M
- Date: 2018
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/125159 , vital:35737 , https://doi.10.2989/1814232x.2018.1441907
- Description: Metabolism quantifies the energy-consuming activities of an organism (Nelson 2016) and is used as an indication of how organisms partition energy resources to activities that allow them to survive, grow and reproduce (Post and Lee 1996). The metabolic profile, which is a composition of the various metabolic rates of an individual, therefore gives an indication of the efficiency of energy transformation and allocation (Fry 1971; Brown et al. 2004). McKenzie et al. (2016) suggested that an organism’s physiology contributes towards its ability to survive under specific environmental conditions. As a result, physiological condition can be a reflection of the performance and fitness of an organism (Pörtner 2010). When combined with information on changing environmental conditions, physiological information can provide insight into species- and community-level responses (Pörtner and Farrell 2008). These kinds of data have served numerous ecological applications, including resource management, conservation (McKenzie et al. 2016) and climate-change assessments (Pörtner and Farrell 2008).
- Full Text:
- Date Issued: 2018
- Authors: Edworthy, Carla , James, Nicola C , Erasmus, B , Kemp, Justin O G , Kaiser, Horst , Potts, Warren M
- Date: 2018
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/125159 , vital:35737 , https://doi.10.2989/1814232x.2018.1441907
- Description: Metabolism quantifies the energy-consuming activities of an organism (Nelson 2016) and is used as an indication of how organisms partition energy resources to activities that allow them to survive, grow and reproduce (Post and Lee 1996). The metabolic profile, which is a composition of the various metabolic rates of an individual, therefore gives an indication of the efficiency of energy transformation and allocation (Fry 1971; Brown et al. 2004). McKenzie et al. (2016) suggested that an organism’s physiology contributes towards its ability to survive under specific environmental conditions. As a result, physiological condition can be a reflection of the performance and fitness of an organism (Pörtner 2010). When combined with information on changing environmental conditions, physiological information can provide insight into species- and community-level responses (Pörtner and Farrell 2008). These kinds of data have served numerous ecological applications, including resource management, conservation (McKenzie et al. 2016) and climate-change assessments (Pörtner and Farrell 2008).
- Full Text:
- Date Issued: 2018
The metabolic physiology of early stage Argyrosomus japonicus with insight into the potential effects of pCO2 induced ocean acidification
- Authors: Edworthy, Carla
- Date: 2018
- Subjects: Argyrosomus , Argyrosomus -- Growth , Argyrosomus -- Mortality , Argyrosomus -- Larvae -- Ecology , Ocean acidification , Marine ecology -- South Africa , Carbon dioxide -- Physiological effect
- Language: English
- Type: text , Thesis , Masters , MSc
- Identifier: http://hdl.handle.net/10962/51417 , vital:26094
- Description: Ocean acidification is a phenomenon associated with global change and anthropogenic CO2 emissions that is changing the chemistry of seawater. These changes result in elevated pCO2 and reduced pH in seawater and this is impacting marine organisms in various ways. Marine fishes are considered generally tolerant to conditions of ocean acidification; however, these assumptions are based on juvenile and adult fish tolerance and the larval stages have not been frequently assessed. Furthermore, it has been suggested that temperate species, particularly those with an estuarine association, may be tolerant to variable CO2 and pH. This study used an eco-physiological approach to understand how the early life stages of Argyrosomus japonicus, an estuarine dependent marine fisheries species found in warm-temperate regions, may be impacted by ocean acidification. The metabolic response of early stage larvae (hatching to early juvenile stage) was assessed under conditions of elevated pCO2 and reduced pH in a controlled laboratory setting. Small volume static respirometry was used to determine the oxygen consumption rate of larvae raised in three pCO2 treatments including a low (pCO2 = 327.50 ± 80.07 µatm at pH 8.15), moderate (pCO2 477.40 ± 59.46 µatm at pH 8.03) and high treatment (PCO2 910.20 ± 136.45 µatm at pH 7.78). These treatment levels were relevant to the present (low) and projected conditions of ocean acidification for the years 2050 (moderate) and 2100 (high). Prior to experimentation with ocean acidification treatments, baseline metabolic rates and diurnal variation in oxygen consumption rates in early stage A. japonicus was determined. Distinct ontogenetic structuring of metabolic rates was observed in early stage A. japonicus, with no cyclical fluctuations in metabolic rate occurring during the 24 hour photoperiodic cycle. Pre-flexion larvae showed no metabolic response to ocean acidification treatments; however post-flexion stage larvae showed metabolic depression of standard metabolic rate in the moderate (32.5%) and high (9.5%) pCO2 treatments (P = 0.02). Larvae raised in the high pCO2 treatment also showed high levels of mortality with no individuals surviving past the post-flexion stage. Larvae raised in the moderate pCO2 treatment were unaffected. This study concluded that ocean acidification conditions expected for the end of the century will have significant impacts on the metabolism of early stage A. japonicus, which may result in reduced growth, retardation of skeletal development and ultimately survival as a result of increased mortality. Furthermore, the timing of reduced metabolic scope will significantly impact the recruitment ability of A. japonicus larvae into estuarine habitats. This could ultimately impact the sustainability of A. japonicus populations. Most importantly, this study highlighted the need to consider the combined effect of ontogeny and life-history strategy when assessing the vulnerability of species to ocean acidification.
- Full Text:
- Date Issued: 2018
- Authors: Edworthy, Carla
- Date: 2018
- Subjects: Argyrosomus , Argyrosomus -- Growth , Argyrosomus -- Mortality , Argyrosomus -- Larvae -- Ecology , Ocean acidification , Marine ecology -- South Africa , Carbon dioxide -- Physiological effect
- Language: English
- Type: text , Thesis , Masters , MSc
- Identifier: http://hdl.handle.net/10962/51417 , vital:26094
- Description: Ocean acidification is a phenomenon associated with global change and anthropogenic CO2 emissions that is changing the chemistry of seawater. These changes result in elevated pCO2 and reduced pH in seawater and this is impacting marine organisms in various ways. Marine fishes are considered generally tolerant to conditions of ocean acidification; however, these assumptions are based on juvenile and adult fish tolerance and the larval stages have not been frequently assessed. Furthermore, it has been suggested that temperate species, particularly those with an estuarine association, may be tolerant to variable CO2 and pH. This study used an eco-physiological approach to understand how the early life stages of Argyrosomus japonicus, an estuarine dependent marine fisheries species found in warm-temperate regions, may be impacted by ocean acidification. The metabolic response of early stage larvae (hatching to early juvenile stage) was assessed under conditions of elevated pCO2 and reduced pH in a controlled laboratory setting. Small volume static respirometry was used to determine the oxygen consumption rate of larvae raised in three pCO2 treatments including a low (pCO2 = 327.50 ± 80.07 µatm at pH 8.15), moderate (pCO2 477.40 ± 59.46 µatm at pH 8.03) and high treatment (PCO2 910.20 ± 136.45 µatm at pH 7.78). These treatment levels were relevant to the present (low) and projected conditions of ocean acidification for the years 2050 (moderate) and 2100 (high). Prior to experimentation with ocean acidification treatments, baseline metabolic rates and diurnal variation in oxygen consumption rates in early stage A. japonicus was determined. Distinct ontogenetic structuring of metabolic rates was observed in early stage A. japonicus, with no cyclical fluctuations in metabolic rate occurring during the 24 hour photoperiodic cycle. Pre-flexion larvae showed no metabolic response to ocean acidification treatments; however post-flexion stage larvae showed metabolic depression of standard metabolic rate in the moderate (32.5%) and high (9.5%) pCO2 treatments (P = 0.02). Larvae raised in the high pCO2 treatment also showed high levels of mortality with no individuals surviving past the post-flexion stage. Larvae raised in the moderate pCO2 treatment were unaffected. This study concluded that ocean acidification conditions expected for the end of the century will have significant impacts on the metabolism of early stage A. japonicus, which may result in reduced growth, retardation of skeletal development and ultimately survival as a result of increased mortality. Furthermore, the timing of reduced metabolic scope will significantly impact the recruitment ability of A. japonicus larvae into estuarine habitats. This could ultimately impact the sustainability of A. japonicus populations. Most importantly, this study highlighted the need to consider the combined effect of ontogeny and life-history strategy when assessing the vulnerability of species to ocean acidification.
- Full Text:
- Date Issued: 2018
- «
- ‹
- 1
- ›
- »