Anti-cancer and anti-trypanosomal properties of alkaloids from the root bark of Zanthoxylum leprieurii Guill and Perr
- Authors: Eze, Fabian I , Siwe-Noundou, Xavier , Isaacs, Michelle , Patala, Srivinas , Osadebe, Patience O , Krause, Rui W M
- Date: 2020
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/193352 , vital:45324 , xlink:href="http://dx.doi.org/10.4314/tjpr.v19i11.19"
- Description: Purpose: To isolate the anti-cancer and anti-trypanosomal principles of Zanthoxylum leprieurii, a medicinally versatile wild tropical plant used for managing tumours, African trypanosomiasis, and inflammation in southeastern Nigeria. Methods: The pure compounds were isolated using chromatographic methods. The structural elucidation of the pure compounds was based on their NMR (1D and 2D) and mass spectral data as well as chemical test results. Structure-activity relationships were based on the structural differences among the compounds. The cytotoxicity of the extracts and compounds (1, 2, 3, and 4) was evaluated in HeLa (human cervix adenocarcinoma) cell line while the trypanocidal activities were evaluated on Trypanosoma brucei brucei. Results: Two acridone alkaloids, 1-hydroxy-3-methoxy-10-methylacridin-9 (10H)-one, named fabiocinine (1), and 1-hydroxy-2,3-dimethoxy-10-methylacridin-9 (10H)-one (arborinine, 2), together with a furoquinoline alkaloid, skimmianine (3), and a chelerythrine derivative, 6-acetonyl-5,6-dihydrochelerythrine (4) were isolated from the root bark of Zanthoxylum leprieurii. Skimmianine (3) exhibited cytotoxicity and anti-trypanosomal IC50 of 12.8 and 13.2 µg/mL respectively (p less than 0.05). Compound (1) and arborinine (2) were selectively cytotoxic to HeLa cells with cytotoxicity IC50 of 28.49 and 62.71 µg/mL, respectively, while (4) did not show significant activity (p less than 0.05). Conclusion: Zanthoxylum leprieurii root bark contains cytotoxic and trypanocidal compounds, and is thus a potential source of anti-cancer and anti-trypanosomal leads.
- Full Text:
- Date Issued: 2020
Phytochemical, anti-inflammatory and anti-trypanosomal properties of Anthocleista vogelii Planch (Loganiaceae) stem bark
- Authors: Eze, Fabian I , Siwe-Noundou, Xavier , Osadebe, Patience , Krause, Rui W M
- Date: 2019
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/194059 , vital:45419 , xlink:href="https://doi.org/10.1016/j.jep.2019.111851"
- Description: Ethnopharmacological relevance: Anthocleista vogelii Planch (Loganiaceae) is used in African Traditional Medicine for the treatment of pain and inflammatory disorders as well as sleeping sickness. Aim of the study: To determine the in vivo anti-inflammatory and in vitro anti-trypanosomal activities of the extracts of A. vogelii stem bark and identify the phytochemical classes of the fractions responsible for the activities. Materials and methods: The in vivo anti-inflammatory activity of the extracts was evaluated using the egg albumin-induced rat paw oedema model while the in vitro anti-trypanosomal activity was assessed on Trypanosoma brucei brucei. The in vitro cytotoxicity was assessed on HeLa (human cervix adenocarcinoma) cell line. Results: The methanolic extract of A. vogelii stem bark, with 11.2% yield, gave LD50 > 5000 mg/kg. The n-hexane fraction of the extract contains steroids, terpenes and fatty acids and yielded non-cytotoxic terpenoidal column fraction with anti-trypanosomal IC50 of 3.0 μg/mL. The ethylacetate fraction at 100 mg/kg dose significantly (p less than 0.05) provoked 37.8, 62.5 and 69.7% inhibition of oedema induced by egg-albumin at the second, fourth and sixth hours respectively. Conclusion: The study demonstrated that the anti-inflammatory and anti-trypanosomal activities of A. vogelii are probably due to non-cytotoxic terpenoids and validated the traditional use of A. vogelii in the treatment of inflammation and sleeping sickness.
- Full Text:
- Date Issued: 2019