Biological and geophysical feedbacks with fire in the Earth System
- Archibald, S, Lehmann, C E, Belcher, C, Bond, W J, Bradstock, R A, Daniau, A L, Dexter, K, Forrestel, E J, Greve, M, He, T, Higgins, Simon I, Ripley, Bradford S
- Authors: Archibald, S , Lehmann, C E , Belcher, C , Bond, W J , Bradstock, R A , Daniau, A L , Dexter, K , Forrestel, E J , Greve, M , He, T , Higgins, Simon I , Ripley, Bradford S
- Date: 2017
- Language: English
- Type: article , text
- Identifier: http://hdl.handle.net/10962/61413 , vital:28024 , http://iopscience.iop.org/article/10.1088/1748-9326/aa9ead/meta
- Description: Roughly 3% of the Earth’s land surface burns annually, representing a critical exchange of energy and matter between the land and atmosphere via combustion. Fires range from slow smouldering peat fires, to low-intensity surface fires, to intense crown fires, depending on vegetation structure, fuel moisture, prevailing climate, and weather conditions. While the links between biogeochemistry, climate and fire are widely studied within Earth system science, these relationships are also mediated by fuels – namely plants and their litter – which are the product of evolutionary and ecological processes. Fire is a powerful selective force and, over their evolutionary history, plants across diverse clades have evolved numerous traits that either tolerate or promote fire. Here we outline a conceptual framework of how plant traits determine the flammability of ecosystems and interact with climate and weather to influence fire regimes. We explore how these evolutionary and ecological processes scale to impact biogeochemistry and Earth system processes. Finally, we outline several research challenges that, when resolved, will improve our understanding of the role of plant evolution in mediating the fire feedbacks driving Earth system processes. Understanding current patterns of fire and vegetation, as well as patterns of fire over geological time, requires research that incorporates evolutionary biology, ecology, biogeography, and the biogeosciences.
- Full Text:
- Authors: Archibald, S , Lehmann, C E , Belcher, C , Bond, W J , Bradstock, R A , Daniau, A L , Dexter, K , Forrestel, E J , Greve, M , He, T , Higgins, Simon I , Ripley, Bradford S
- Date: 2017
- Language: English
- Type: article , text
- Identifier: http://hdl.handle.net/10962/61413 , vital:28024 , http://iopscience.iop.org/article/10.1088/1748-9326/aa9ead/meta
- Description: Roughly 3% of the Earth’s land surface burns annually, representing a critical exchange of energy and matter between the land and atmosphere via combustion. Fires range from slow smouldering peat fires, to low-intensity surface fires, to intense crown fires, depending on vegetation structure, fuel moisture, prevailing climate, and weather conditions. While the links between biogeochemistry, climate and fire are widely studied within Earth system science, these relationships are also mediated by fuels – namely plants and their litter – which are the product of evolutionary and ecological processes. Fire is a powerful selective force and, over their evolutionary history, plants across diverse clades have evolved numerous traits that either tolerate or promote fire. Here we outline a conceptual framework of how plant traits determine the flammability of ecosystems and interact with climate and weather to influence fire regimes. We explore how these evolutionary and ecological processes scale to impact biogeochemistry and Earth system processes. Finally, we outline several research challenges that, when resolved, will improve our understanding of the role of plant evolution in mediating the fire feedbacks driving Earth system processes. Understanding current patterns of fire and vegetation, as well as patterns of fire over geological time, requires research that incorporates evolutionary biology, ecology, biogeography, and the biogeosciences.
- Full Text:
A proposed prioritization system for the management of invasive alien plants in South Africa
- Robertson, Mark P, Villet, Martin H, Fairbanks, Dean H K, Henderson, L, Higgins, Simon I, Hoffmann, John H, Le Maitre, David C, Palmer, Anthony R, Riggs, I, Shackleton, Charlie M, Zimmermann, Helmuth G
- Authors: Robertson, Mark P , Villet, Martin H , Fairbanks, Dean H K , Henderson, L , Higgins, Simon I , Hoffmann, John H , Le Maitre, David C , Palmer, Anthony R , Riggs, I , Shackleton, Charlie M , Zimmermann, Helmuth G
- Date: 2003
- Language: English
- Type: Article
- Identifier: vital:6911 , http://hdl.handle.net/10962/d1011872
- Description: Every country has weed species whose presence conflicts in some way with human management objectives and needs. Resources for research and control are limited, so priority should be given to species that are the biggest problem. The prioritization system described in this article was designed to assess objectively research and control priorities of invasive alien plants at a national scale in South Africa. The evaluation consists of seventeen criteria, grouped into five modules, that assess invasiveness, spatial characteristics, potential impact, potential for control, and conflicts of interest for each plant species under consideration. Total prioritization scores, calculated from criterion and module scores, were used to assess a species' priority. Prioritization scores were calculated by combining independent assessments provided by several experts, thus increasing the reliability of the rankings. The total confidence score, a separate index, indicates the reliability and availability of data used to make an assessment. Candidate species for evaluation were identified and assessed by several experts using the prioritization system. The final ranking was made by combining two separate indices, the total prioritization score and the total confidence score. This approach integrates the plant's perceived priority with an index of data reliability. Of the 61 species assessed, those with the highest ranks (Lantana camara, Chromolaena odorata and Opuntia ficus-indica) had high prioritization and high confidence scores, and are thus of most concern. Those species with the lowest ranks, for example, Harrisia martinii, Opuntia spinulifera and Opuntia exaltata, had low prioritization scores and high confidence scores, and thus are of least concern. Our approach to ranking weeds offers several advantages over existing systems because it is designed for multiple assessors based on the Delphi decision-making technique, the criteria contribute equally to the total score, and the system can accommodate incomplete data on a species. Although the choice of criteria may be criticized and the system has certain limitations, it appears to have delivered credible results.
- Full Text:
- Authors: Robertson, Mark P , Villet, Martin H , Fairbanks, Dean H K , Henderson, L , Higgins, Simon I , Hoffmann, John H , Le Maitre, David C , Palmer, Anthony R , Riggs, I , Shackleton, Charlie M , Zimmermann, Helmuth G
- Date: 2003
- Language: English
- Type: Article
- Identifier: vital:6911 , http://hdl.handle.net/10962/d1011872
- Description: Every country has weed species whose presence conflicts in some way with human management objectives and needs. Resources for research and control are limited, so priority should be given to species that are the biggest problem. The prioritization system described in this article was designed to assess objectively research and control priorities of invasive alien plants at a national scale in South Africa. The evaluation consists of seventeen criteria, grouped into five modules, that assess invasiveness, spatial characteristics, potential impact, potential for control, and conflicts of interest for each plant species under consideration. Total prioritization scores, calculated from criterion and module scores, were used to assess a species' priority. Prioritization scores were calculated by combining independent assessments provided by several experts, thus increasing the reliability of the rankings. The total confidence score, a separate index, indicates the reliability and availability of data used to make an assessment. Candidate species for evaluation were identified and assessed by several experts using the prioritization system. The final ranking was made by combining two separate indices, the total prioritization score and the total confidence score. This approach integrates the plant's perceived priority with an index of data reliability. Of the 61 species assessed, those with the highest ranks (Lantana camara, Chromolaena odorata and Opuntia ficus-indica) had high prioritization and high confidence scores, and are thus of most concern. Those species with the lowest ranks, for example, Harrisia martinii, Opuntia spinulifera and Opuntia exaltata, had low prioritization scores and high confidence scores, and thus are of least concern. Our approach to ranking weeds offers several advantages over existing systems because it is designed for multiple assessors based on the Delphi decision-making technique, the criteria contribute equally to the total score, and the system can accommodate incomplete data on a species. Although the choice of criteria may be criticized and the system has certain limitations, it appears to have delivered credible results.
- Full Text:
- «
- ‹
- 1
- ›
- »