A context for the 2011 compilation of reviews on the biological control of invasive alien plants in South Africa
- Moran, V Clifford, Hoffmann, John C, Hill, Martin P
- Authors: Moran, V Clifford , Hoffmann, John C , Hill, Martin P
- Date: 2011
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/451270 , vital:75035 , https://hdl.handle.net/10520/EJC32923
- Description: Besides this introduction, which gives a historical and contextual perspective, this compilation of reviews in African Entomology volume 19(2), comprises 28 papers, 24 of which provide accounts of recent (i.e. emphasising the period from 1999-2010) South African biological control projects against individual invasive alien plant species, or against taxonomically- or functionally-related groups of species. Three of the papers deal with issues related to research and implementation of biological control, namely: regulations and risk assessment; mapping; and cost-benefit analyses. The concluding paper is a complete catalogue, with summary statistics and key references, of all the target weeds and of the insect, mite and pathogen species (and subsidiary taxa) that have been implicated in biological control efforts against invasive alien plants in South Africa since 1913. This compilation is the third in a series of accounts of all the biological control programmes against invasive alien plants that have been undertaken in South Africa: the first, produced in 1991, reviewed progress to that date and the next, published in 1999, was a review of progress from 1990-1998. A comparison of the contents of these three review volumes is given in tabular form. The 2011 compilation contains reports on 13 novel programmes, in the sense that they have not been previously reviewed. Eight of these projects have focused on incipient weeds, or on rapidly-emerging weed species or groups of species, that have only recently been targeted for biological control. The increased scope and commitment to weed biological control research in South Africa has been largely the consequence of the sustained support provided by the Working for Water Programme of the South African Department of Water Affairs, over the last 15 years.
- Full Text:
- Date Issued: 2011
- Authors: Moran, V Clifford , Hoffmann, John C , Hill, Martin P
- Date: 2011
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/451270 , vital:75035 , https://hdl.handle.net/10520/EJC32923
- Description: Besides this introduction, which gives a historical and contextual perspective, this compilation of reviews in African Entomology volume 19(2), comprises 28 papers, 24 of which provide accounts of recent (i.e. emphasising the period from 1999-2010) South African biological control projects against individual invasive alien plant species, or against taxonomically- or functionally-related groups of species. Three of the papers deal with issues related to research and implementation of biological control, namely: regulations and risk assessment; mapping; and cost-benefit analyses. The concluding paper is a complete catalogue, with summary statistics and key references, of all the target weeds and of the insect, mite and pathogen species (and subsidiary taxa) that have been implicated in biological control efforts against invasive alien plants in South Africa since 1913. This compilation is the third in a series of accounts of all the biological control programmes against invasive alien plants that have been undertaken in South Africa: the first, produced in 1991, reviewed progress to that date and the next, published in 1999, was a review of progress from 1990-1998. A comparison of the contents of these three review volumes is given in tabular form. The 2011 compilation contains reports on 13 novel programmes, in the sense that they have not been previously reviewed. Eight of these projects have focused on incipient weeds, or on rapidly-emerging weed species or groups of species, that have only recently been targeted for biological control. The increased scope and commitment to weed biological control research in South Africa has been largely the consequence of the sustained support provided by the Working for Water Programme of the South African Department of Water Affairs, over the last 15 years.
- Full Text:
- Date Issued: 2011
A review of the biological control programmes on Eichhornia crassipes (C. mart.) solms (Pontederiaceae), Salvinia molesta DS Mitch.(Salviniaceae), Pistia stratiotes L.(Araceae), Myriophyllum aquaticum (vell.) verdc.(Haloragaceae) and Azolla filiculoides Lam.(Azollaceae) in South Africa
- Coetzee, Julie A, Hill, Martin P, Byrne, Marcus J
- Authors: Coetzee, Julie A , Hill, Martin P , Byrne, Marcus J
- Date: 2011
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/451285 , vital:75036 , https://hdl.handle.net/10520/EJC32900
- Description: Biological control against water hyacinth, Eichhornia crassipes (C. Mart.) Solms (Pontederiaceae), salvinia, Salvinia molesta D.S. Mitch. (Salviniaceae), water lettuce, Pistia stratiotes L. (Araceae), parrot's feather, Myriophyllum aquaticum (Vell.) Verdc. (Haloragaceae), and red water fern, Azolla filiculoides Lam. (Azollaceae) has been ongoing in South Africa since the release of the first biological control agent on water hyacinth in 1974. This review provides an account of progress for the period from 1999. Post-release evaluations over the last three years have shown that, with the exception of water hyacinth, all of these problematic aquatic plants have been suppressed effectively using classical biological control. In eutrophic water bodies at high elevations that experience cold winters, an integrated approach, that includes herbicide application and augmentive biological control, is required against water hyacinth. The grasshopper Cornops aquaticum (Brüner) (Orthoptera: Acrididae: Leptysminae) has recently been released as a new agent for water hyacinth, and Megamelus scutellaris Berg (Hemiptera: Delphacidae) and Taosa longula Remes Lenicov (Hemiptera: Dictyopharidae) are being considered for release on water hyacinth. The longterm management of alien aquatic plants in South Africa relies on the prevention of new introductions of aquatic plant species that could replace those that have been controlled, and, more importantly, on a reduction in nutrient levels in South Africa's aquatic ecosystems.
- Full Text:
- Date Issued: 2011
- Authors: Coetzee, Julie A , Hill, Martin P , Byrne, Marcus J
- Date: 2011
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/451285 , vital:75036 , https://hdl.handle.net/10520/EJC32900
- Description: Biological control against water hyacinth, Eichhornia crassipes (C. Mart.) Solms (Pontederiaceae), salvinia, Salvinia molesta D.S. Mitch. (Salviniaceae), water lettuce, Pistia stratiotes L. (Araceae), parrot's feather, Myriophyllum aquaticum (Vell.) Verdc. (Haloragaceae), and red water fern, Azolla filiculoides Lam. (Azollaceae) has been ongoing in South Africa since the release of the first biological control agent on water hyacinth in 1974. This review provides an account of progress for the period from 1999. Post-release evaluations over the last three years have shown that, with the exception of water hyacinth, all of these problematic aquatic plants have been suppressed effectively using classical biological control. In eutrophic water bodies at high elevations that experience cold winters, an integrated approach, that includes herbicide application and augmentive biological control, is required against water hyacinth. The grasshopper Cornops aquaticum (Brüner) (Orthoptera: Acrididae: Leptysminae) has recently been released as a new agent for water hyacinth, and Megamelus scutellaris Berg (Hemiptera: Delphacidae) and Taosa longula Remes Lenicov (Hemiptera: Dictyopharidae) are being considered for release on water hyacinth. The longterm management of alien aquatic plants in South Africa relies on the prevention of new introductions of aquatic plant species that could replace those that have been controlled, and, more importantly, on a reduction in nutrient levels in South Africa's aquatic ecosystems.
- Full Text:
- Date Issued: 2011
A stable isotope approach for the early detection and identification of N loading in aquatic ecosystems
- Hill, Jaclyn M, Kaehler, Sven, Hill, Martin P, Coetzee, Julie A
- Authors: Hill, Jaclyn M , Kaehler, Sven , Hill, Martin P , Coetzee, Julie A
- Date: 2011
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/444491 , vital:74245 , https://www.wrc.org.za/wp-content/uploads/mdocs/KV 280.pdf
- Description: Global increases in urbanization and anthropogenic activity within wa-tersheds and catchment areas have resulted in excessive nitrogen loads in aquatic ecosystems. South Africa is deeply dependent on nat-ural resources for its economic health and as a consequence is particu-larly vulnerable to the degradation of its natural capital. Increased nitro-gen loading can result in widespread aquatic ecosystem degradation including: harmful algal blooms, increased turbidity, hypoxia, loss of aquatic vegetation and habitat and fish kills, it is also one of the mecha-nisms driving aquatic weed invasions. Understanding the fate and pro-cessing of anthropogenic nutrients in natural systems is therefore criti-cal for both preserving the well-being and biotic heritage for future gen-erations as well as providing a tremendous opportunity to improve the management driven by science. The objectives of this study were to evaluate the feasibility of mapping anthropogenic pollution through sta-ble isotopes signatures of aquatic plants, to investigate the potential for identifying different pollution sources, concentrations and distributions in a freshwater environment and to determine the utility of these tech-niques in indentifying early eutrophication.
- Full Text:
- Date Issued: 2011
- Authors: Hill, Jaclyn M , Kaehler, Sven , Hill, Martin P , Coetzee, Julie A
- Date: 2011
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/444491 , vital:74245 , https://www.wrc.org.za/wp-content/uploads/mdocs/KV 280.pdf
- Description: Global increases in urbanization and anthropogenic activity within wa-tersheds and catchment areas have resulted in excessive nitrogen loads in aquatic ecosystems. South Africa is deeply dependent on nat-ural resources for its economic health and as a consequence is particu-larly vulnerable to the degradation of its natural capital. Increased nitro-gen loading can result in widespread aquatic ecosystem degradation including: harmful algal blooms, increased turbidity, hypoxia, loss of aquatic vegetation and habitat and fish kills, it is also one of the mecha-nisms driving aquatic weed invasions. Understanding the fate and pro-cessing of anthropogenic nutrients in natural systems is therefore criti-cal for both preserving the well-being and biotic heritage for future gen-erations as well as providing a tremendous opportunity to improve the management driven by science. The objectives of this study were to evaluate the feasibility of mapping anthropogenic pollution through sta-ble isotopes signatures of aquatic plants, to investigate the potential for identifying different pollution sources, concentrations and distributions in a freshwater environment and to determine the utility of these tech-niques in indentifying early eutrophication.
- Full Text:
- Date Issued: 2011
Regulation and risk assessment for importations and releases of biological control agents against invasive alien plants in South Africa
- Klein, Hildegard, Hill, Martin P, Zachariades, Costas, Zimmermann, Helmuth G
- Authors: Klein, Hildegard , Hill, Martin P , Zachariades, Costas , Zimmermann, Helmuth G
- Date: 2011
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/451481 , vital:75052 , https://hdl.handle.net/10520/EJC32898
- Description: The importation and release of biological control agents against invasive alien plants in South Africa are subject to regulation by the Department of Agriculture, Forestry and Fisheries (DAFF), under its Agricultural Pests Act, and by the Department of Environmental Affairs (DEA), initially under its Environment Conservation Act, subsequently under the National Environmental Management Act and eventually, as soon as the relevant regulations have been developed, under the National Environmental Management: Biodiversity Act. Peer review, both within South Africa, and with colleagues in other countries, has helped to ensure the integrity of the science and practice of weed biological control in South Africa. This paper traces the development of the regulatory system from the first weed biological control project in 1913, through a dispensation when importations and releases were authorized by DAFF only to a dual regulatory system involving two government departments. Inappropriate legislation, lack of knowledge about biological control amongst the relevant authorities and the costs of employing compulsory private consultants are some of the reasons for significant delays that have become a feature in the authorization of biological control agent releases. These delays have set back several control programmes. Holding agents in quarantine while awaiting decisions ties up expensive space and staff time and increases the risk of losing colonies through accidents or decreased genetic vigour. It seems likely that changes in legislation within DEA will streamline the regulatory process in the near future.
- Full Text:
- Date Issued: 2011
- Authors: Klein, Hildegard , Hill, Martin P , Zachariades, Costas , Zimmermann, Helmuth G
- Date: 2011
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/451481 , vital:75052 , https://hdl.handle.net/10520/EJC32898
- Description: The importation and release of biological control agents against invasive alien plants in South Africa are subject to regulation by the Department of Agriculture, Forestry and Fisheries (DAFF), under its Agricultural Pests Act, and by the Department of Environmental Affairs (DEA), initially under its Environment Conservation Act, subsequently under the National Environmental Management Act and eventually, as soon as the relevant regulations have been developed, under the National Environmental Management: Biodiversity Act. Peer review, both within South Africa, and with colleagues in other countries, has helped to ensure the integrity of the science and practice of weed biological control in South Africa. This paper traces the development of the regulatory system from the first weed biological control project in 1913, through a dispensation when importations and releases were authorized by DAFF only to a dual regulatory system involving two government departments. Inappropriate legislation, lack of knowledge about biological control amongst the relevant authorities and the costs of employing compulsory private consultants are some of the reasons for significant delays that have become a feature in the authorization of biological control agent releases. These delays have set back several control programmes. Holding agents in quarantine while awaiting decisions ties up expensive space and staff time and increases the risk of losing colonies through accidents or decreased genetic vigour. It seems likely that changes in legislation within DEA will streamline the regulatory process in the near future.
- Full Text:
- Date Issued: 2011
The role of eutrophication in the biological control of water hyacinth, Eichhornia crassipes, in South Africa
- Coetzee, Julie A, Hill, Martin P
- Authors: Coetzee, Julie A , Hill, Martin P
- Date: 2011
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/69263 , vital:29474 , https://doi.org/10.1007/s10526-011-9426-y
- Description: South Africa has some of the most eutrophic aquatic systems in the world, as a result of the adoption of an unnecessarily high 1 mg l-1 phosphorus (P) standard for all water treatment works in the 1970 s. The floating aquatic macrophyte, water hyacinth (Eichhornia crassipes (Mart.) Solms (Pontederiaceae), has taken advantage of these nutrient rich systems, becoming highly invasive and damaging. Despite the implementation of a biological control programme in South Africa, water hyacinth remains the worst aquatic weed. A meta-analysis of published and unpublished laboratory studies that investigated the combined effect of P and nitrogen (N) water nutrient concentration and control agent herbivory showed that water nutrient status was more important than herbivory in water hyacinth growth. Analysis of long-term field data collected monthly from 14 sites around South Africa between 2004 and 2005 supported these findings. Therefore, the first step in any water hyacinth control programme should be to reduce the nutrient status of the water body.
- Full Text:
- Date Issued: 2011
- Authors: Coetzee, Julie A , Hill, Martin P
- Date: 2011
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/69263 , vital:29474 , https://doi.org/10.1007/s10526-011-9426-y
- Description: South Africa has some of the most eutrophic aquatic systems in the world, as a result of the adoption of an unnecessarily high 1 mg l-1 phosphorus (P) standard for all water treatment works in the 1970 s. The floating aquatic macrophyte, water hyacinth (Eichhornia crassipes (Mart.) Solms (Pontederiaceae), has taken advantage of these nutrient rich systems, becoming highly invasive and damaging. Despite the implementation of a biological control programme in South Africa, water hyacinth remains the worst aquatic weed. A meta-analysis of published and unpublished laboratory studies that investigated the combined effect of P and nitrogen (N) water nutrient concentration and control agent herbivory showed that water nutrient status was more important than herbivory in water hyacinth growth. Analysis of long-term field data collected monthly from 14 sites around South Africa between 2004 and 2005 supported these findings. Therefore, the first step in any water hyacinth control programme should be to reduce the nutrient status of the water body.
- Full Text:
- Date Issued: 2011
- «
- ‹
- 1
- ›
- »