Antiplasmodial Activity of the n-Hexane Extract from Pleurotus ostreatus (Jacq. ex. Fr) P. Kumm
- Afieroho, Ozadheoghene E, Siwe-Noundou, Xavier, Onyia, Chiazor P, Festus, Osamuyi H, Chukwu, Elizabeth C, Adedokun, Olutayo M, Isaacs, Michelle, Hoppe, Heinrich C, Krause, Rui W M, Abo, Kio A
- Authors: Afieroho, Ozadheoghene E , Siwe-Noundou, Xavier , Onyia, Chiazor P , Festus, Osamuyi H , Chukwu, Elizabeth C , Adedokun, Olutayo M , Isaacs, Michelle , Hoppe, Heinrich C , Krause, Rui W M , Abo, Kio A
- Date: 2019
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/194981 , vital:45516 , xlink:href="https://doi.org/10.4274/tjps.18894"
- Description: Objectives: Several mushrooms species have been reported to be nematophagous and antiprotozoan. This study reported the antiplasmodial and cytotoxic properties of the n-hexane extract from the edible mushroom Pleurotus ostreatus and the isolation of a sterol from the extract. Materials and Methods: Antiplasmodial and cytotoxicity assays were done in vitro using the plasmodium lactate dehydrogenase assay and human HeLa cervical cell lines, respectively. The structure of the isolated compound from the n-hexane extract was elucidated using spectroscopic techniques. Results: The n-hexane extract (yield: 0.93% w/w) showed dose dependent antiplasmodial activity with the trend in parasite inhibition of: chloroquine (IC50=0.016 μg/mL) > n-hexane extract (IC50=25.18 μg/mL). It also showed mild cytotoxicity (IC50>100 μg/mL; selectivity index >4) compared to the reference drug emetine (IC50=0.013 μg/mL). The known sterol, ergostan-5,7,22-trien-3-ol, was isolated and characterized from the extract. Conclusion: This study reporting for the first time the antiplasmodial activity of P. ostreatus revealed its nutraceutical potential in the management of malaria.
- Full Text:
- Authors: Afieroho, Ozadheoghene E , Siwe-Noundou, Xavier , Onyia, Chiazor P , Festus, Osamuyi H , Chukwu, Elizabeth C , Adedokun, Olutayo M , Isaacs, Michelle , Hoppe, Heinrich C , Krause, Rui W M , Abo, Kio A
- Date: 2019
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/194981 , vital:45516 , xlink:href="https://doi.org/10.4274/tjps.18894"
- Description: Objectives: Several mushrooms species have been reported to be nematophagous and antiprotozoan. This study reported the antiplasmodial and cytotoxic properties of the n-hexane extract from the edible mushroom Pleurotus ostreatus and the isolation of a sterol from the extract. Materials and Methods: Antiplasmodial and cytotoxicity assays were done in vitro using the plasmodium lactate dehydrogenase assay and human HeLa cervical cell lines, respectively. The structure of the isolated compound from the n-hexane extract was elucidated using spectroscopic techniques. Results: The n-hexane extract (yield: 0.93% w/w) showed dose dependent antiplasmodial activity with the trend in parasite inhibition of: chloroquine (IC50=0.016 μg/mL) > n-hexane extract (IC50=25.18 μg/mL). It also showed mild cytotoxicity (IC50>100 μg/mL; selectivity index >4) compared to the reference drug emetine (IC50=0.013 μg/mL). The known sterol, ergostan-5,7,22-trien-3-ol, was isolated and characterized from the extract. Conclusion: This study reporting for the first time the antiplasmodial activity of P. ostreatus revealed its nutraceutical potential in the management of malaria.
- Full Text:
In vitro Anti-trypanosomal activities of indanone-based chalcones:
- Beteck, Richard M, Legoabe, Lesetje J, Isaacs, Michelle, Hoppe, Heinrich C
- Authors: Beteck, Richard M , Legoabe, Lesetje J , Isaacs, Michelle , Hoppe, Heinrich C
- Date: 2019
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/158280 , vital:40169 , https://doi.org/10.3354/meps12953
- Description: Human African trypanosomiasis is a neglected infectious disease that affects mostly people living in the rural areas of Africa. Current treatment options are limited to just four drugs that have been in use of four to nine decades. The life-threatening toxic side-effects associated with the use of these drugs are disconcerting. Poor efficacy, low oral bioavailability, and high cost are other shortcomings of current HAT treatments. Evaluating the potentials of known hits for other therapeutic areas may be a fast and convenient method to discover new hit compounds against alternative targets. A library of 34 known indanone based chalcones was screened against T.b. brucei and nine potent hits, having IC50 values between 0.5–8.9 µM, were found. The SAR studies of this series could provide useful information in guiding future exploration of this class of compounds in search of more potent, safe, and low cost anti-trypanosomal agents.
- Full Text:
- Authors: Beteck, Richard M , Legoabe, Lesetje J , Isaacs, Michelle , Hoppe, Heinrich C
- Date: 2019
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/158280 , vital:40169 , https://doi.org/10.3354/meps12953
- Description: Human African trypanosomiasis is a neglected infectious disease that affects mostly people living in the rural areas of Africa. Current treatment options are limited to just four drugs that have been in use of four to nine decades. The life-threatening toxic side-effects associated with the use of these drugs are disconcerting. Poor efficacy, low oral bioavailability, and high cost are other shortcomings of current HAT treatments. Evaluating the potentials of known hits for other therapeutic areas may be a fast and convenient method to discover new hit compounds against alternative targets. A library of 34 known indanone based chalcones was screened against T.b. brucei and nine potent hits, having IC50 values between 0.5–8.9 µM, were found. The SAR studies of this series could provide useful information in guiding future exploration of this class of compounds in search of more potent, safe, and low cost anti-trypanosomal agents.
- Full Text:
In vitro antimalarial, antitrypanosomal and HIV-1 integrase inhibitory activities of two Cameroonian medicinal plants
- Fouokeng, Yannick, Feumo Feusso, H M, Mbosso Teinkela, Jean E, Siwe-Noundou, Xavier, Wintjens, René T, Isaacs, Michelle, Hoppe, Heinrich C, Krause, Rui W M, Azébazé, Anatole G B, Vardamides, Juliette C
- Authors: Fouokeng, Yannick , Feumo Feusso, H M , Mbosso Teinkela, Jean E , Siwe-Noundou, Xavier , Wintjens, René T , Isaacs, Michelle , Hoppe, Heinrich C , Krause, Rui W M , Azébazé, Anatole G B , Vardamides, Juliette C
- Date: 2019
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/195014 , vital:45519 , xlink:href="https://doi.org/10.1016/j.sajb.2018.10.008"
- Description: Antiplasmodial, antitrypanosomal and anti-HIV-1 activities of crude extracts, fractions and some isolated compounds from two Cameroonian medicinal plants: Antrocaryon klaineanum Pierre (Anacardiaceae) and Diospyros conocarpa Gürke ex K. Schum. (Ebenaceae) were assessed. The phytochemical studies led to the isolation of eight compounds (1–8) from Diospyros conocarpa and six compounds (6, 9–13) from Antrocaryon klaineanum. These compounds were identified as mangiferolic acid (1), 3β, 22(S)-dihydroxycycloart-24E-en-26-oic acid (2), lupeol (3), aridanin (4), betulin (5), betulinic acid (6), bergenin (7), D-quercitol(8), entilin C(9), entilin A(10), antrocarine A(11), 7R,20(S)-dihydroxy-4,24(28)-ergostadien-3-one(12) and stigmasterol glucoside (13). The criteria for activity were set as follows: an IC50 value more than 10 μg/mL for crude extracts and more than 1 μg/mL for pure compounds. The hexane/ethyl acetate (1:1) fraction of A.klaineanum root bark (AKERF1) and the hexane/ethyl acetate (1:1) fraction of A.klaineanum trunk bark (AKETF1) presented the strongest antiplasmodial activities with IC50 values of 0.4 and 4.4 μg/mL, respectively. Aridanin (4) and antrocarine A(11), as well as the crude extract of D.conocarpa roots (EDCR), AKERF1 and AKETF1 showed moderate trypanocidal effects. The crude extract of A.klaineanum root bark (AKER) and AKETF1 exhibited attractive activities on HIV-1 integrase with IC50 values of 1.96 and 24.04 μg/mL, respectively. The results provide baseline information on the use of A.klaineanum and D.conocarpa extracts, as well as certain components, as sources of new antiplasmodial, antitrypanosomal and anti-HIV drugs.
- Full Text:
- Authors: Fouokeng, Yannick , Feumo Feusso, H M , Mbosso Teinkela, Jean E , Siwe-Noundou, Xavier , Wintjens, René T , Isaacs, Michelle , Hoppe, Heinrich C , Krause, Rui W M , Azébazé, Anatole G B , Vardamides, Juliette C
- Date: 2019
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/195014 , vital:45519 , xlink:href="https://doi.org/10.1016/j.sajb.2018.10.008"
- Description: Antiplasmodial, antitrypanosomal and anti-HIV-1 activities of crude extracts, fractions and some isolated compounds from two Cameroonian medicinal plants: Antrocaryon klaineanum Pierre (Anacardiaceae) and Diospyros conocarpa Gürke ex K. Schum. (Ebenaceae) were assessed. The phytochemical studies led to the isolation of eight compounds (1–8) from Diospyros conocarpa and six compounds (6, 9–13) from Antrocaryon klaineanum. These compounds were identified as mangiferolic acid (1), 3β, 22(S)-dihydroxycycloart-24E-en-26-oic acid (2), lupeol (3), aridanin (4), betulin (5), betulinic acid (6), bergenin (7), D-quercitol(8), entilin C(9), entilin A(10), antrocarine A(11), 7R,20(S)-dihydroxy-4,24(28)-ergostadien-3-one(12) and stigmasterol glucoside (13). The criteria for activity were set as follows: an IC50 value more than 10 μg/mL for crude extracts and more than 1 μg/mL for pure compounds. The hexane/ethyl acetate (1:1) fraction of A.klaineanum root bark (AKERF1) and the hexane/ethyl acetate (1:1) fraction of A.klaineanum trunk bark (AKETF1) presented the strongest antiplasmodial activities with IC50 values of 0.4 and 4.4 μg/mL, respectively. Aridanin (4) and antrocarine A(11), as well as the crude extract of D.conocarpa roots (EDCR), AKERF1 and AKETF1 showed moderate trypanocidal effects. The crude extract of A.klaineanum root bark (AKER) and AKETF1 exhibited attractive activities on HIV-1 integrase with IC50 values of 1.96 and 24.04 μg/mL, respectively. The results provide baseline information on the use of A.klaineanum and D.conocarpa extracts, as well as certain components, as sources of new antiplasmodial, antitrypanosomal and anti-HIV drugs.
- Full Text:
Synthesis of N-Substituted phosphoramidic acid esters as “reverse” fosmidomycin analogues
- Adeyemi, Christiana M, Hoppe, Heinrich C, Isaacs, Michelle, Klein, Rosalyn, Lobb, Kevin A, Kaye, Perry T
- Authors: Adeyemi, Christiana M , Hoppe, Heinrich C , Isaacs, Michelle , Klein, Rosalyn , Lobb, Kevin A , Kaye, Perry T
- Date: 2019
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/443238 , vital:74101 , https://doi.org/10.1016/j.tet.2019.02.003
- Description: An efficient synthetic pathway to a series of novel “reverse” fosmidomycin analogues has been developed, commencing from substituted benzylamines. In these analogues, the fosmidomycin hydroxamate moiety is reversed and the tetrahedral methylene carbon adjacent to the phosphonate moiety is replaced by a nitrogen atom bearing different benzyl groups. The resulting phosphonate esters were designed as potential antimalarial “pro-drugs”.
- Full Text:
- Authors: Adeyemi, Christiana M , Hoppe, Heinrich C , Isaacs, Michelle , Klein, Rosalyn , Lobb, Kevin A , Kaye, Perry T
- Date: 2019
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/443238 , vital:74101 , https://doi.org/10.1016/j.tet.2019.02.003
- Description: An efficient synthetic pathway to a series of novel “reverse” fosmidomycin analogues has been developed, commencing from substituted benzylamines. In these analogues, the fosmidomycin hydroxamate moiety is reversed and the tetrahedral methylene carbon adjacent to the phosphonate moiety is replaced by a nitrogen atom bearing different benzyl groups. The resulting phosphonate esters were designed as potential antimalarial “pro-drugs”.
- Full Text:
Synthesis of N-Substituted phosphoramidic acid esters as “reverse” fosmidomycin analogues
- Adeyemi, Christiana M, Hoppe, Heinrich C, Isaacs, Michelle, Klein, Rosalyn, Lobb, Kevin A, Kaye, Perry T
- Authors: Adeyemi, Christiana M , Hoppe, Heinrich C , Isaacs, Michelle , Klein, Rosalyn , Lobb, Kevin A , Kaye, Perry T
- Date: 2019
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/447196 , vital:74591 , xlink:href="https://doi.org/10.1016/j.tet.2019.02.003"
- Description: An efficient synthetic pathway to a series of novel “reverse” fosmidomycin analogues has been developed, commencing from substituted benzylamines. In these analogues, the fosmidomycin hydroxamate moiety is reversed and the tetrahedral methylene carbon adjacent to the phosphonate moiety is replaced by a nitrogen atom bearing different benzyl groups. The resulting phosphonate esters were designed as potential antimalarial “pro-drugs”.
- Full Text:
- Authors: Adeyemi, Christiana M , Hoppe, Heinrich C , Isaacs, Michelle , Klein, Rosalyn , Lobb, Kevin A , Kaye, Perry T
- Date: 2019
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/447196 , vital:74591 , xlink:href="https://doi.org/10.1016/j.tet.2019.02.003"
- Description: An efficient synthetic pathway to a series of novel “reverse” fosmidomycin analogues has been developed, commencing from substituted benzylamines. In these analogues, the fosmidomycin hydroxamate moiety is reversed and the tetrahedral methylene carbon adjacent to the phosphonate moiety is replaced by a nitrogen atom bearing different benzyl groups. The resulting phosphonate esters were designed as potential antimalarial “pro-drugs”.
- Full Text:
- «
- ‹
- 1
- ›
- »