The effect of permanent protective netting on insect pest prevalence in citrus orchards in South Africa
- Marsberg, Tamryn, Peyper, Mellissa, Kirkman, Wayne, Moore, Sean D, Sutton, Guy F
- Authors: Marsberg, Tamryn , Peyper, Mellissa , Kirkman, Wayne , Moore, Sean D , Sutton, Guy F
- Date: 2024
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/452240 , vital:75114 , http://dx.doi.org/10.17159/2254-8854/2024/a17244
- Description: The use of protective netting is becoming an increasingly popular practice in the citrus industry in South Africa. However, data on its effects on biotic factors, particularly insect pests, are limited. This study focused on the effect nets have on key citrus pests in the Eastern Cape province. Orchards under nets and open orchards, of similar cultivars, ages and management practices, were monitored at several sites over two seasons for pest infestation and damage. Weekly monitoring was conducted for Thaumatotibia leucotreta infestation. Other pests were monitored either monthly or once a season.
- Full Text:
- Date Issued: 2024
- Authors: Marsberg, Tamryn , Peyper, Mellissa , Kirkman, Wayne , Moore, Sean D , Sutton, Guy F
- Date: 2024
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/452240 , vital:75114 , http://dx.doi.org/10.17159/2254-8854/2024/a17244
- Description: The use of protective netting is becoming an increasingly popular practice in the citrus industry in South Africa. However, data on its effects on biotic factors, particularly insect pests, are limited. This study focused on the effect nets have on key citrus pests in the Eastern Cape province. Orchards under nets and open orchards, of similar cultivars, ages and management practices, were monitored at several sites over two seasons for pest infestation and damage. Weekly monitoring was conducted for Thaumatotibia leucotreta infestation. Other pests were monitored either monthly or once a season.
- Full Text:
- Date Issued: 2024
An improved systems approach as a phytosanitary measure for Thaumatotibia leucotreta (Lepidoptera: Tortricidae) in export citrus fruit from South Africa
- Hattingh, Vaughan, Moore, Sean D, Kirkman, Wayne, Goddard, Mathew K, Thackeray, Sean R, Peyper, Mellissa, Sharp, Gary, Cronjé, Paul, Pringle, Ken
- Authors: Hattingh, Vaughan , Moore, Sean D , Kirkman, Wayne , Goddard, Mathew K , Thackeray, Sean R , Peyper, Mellissa , Sharp, Gary , Cronjé, Paul , Pringle, Ken
- Date: 2020
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/423700 , vital:72086 , xlink:href="https://doi.org/10.1093/jee/toz336"
- Description: A systems approach was previously developed for mitigating phytosanitary risk of Thaumatotibia leucotreta (Meyrick) in citrus fruit exported from South Africa, as an alternative to a standalone cold disinfestation treatment. The present study first tested the original systems approach by applying it on a semicommercial scale in 10 Nova mandarin orchards. Fruit were inspected at points in the production, packing, and simulated shipping process, to assess performance of the systems approach. Additional data were obtained from 17 Valencia orange orchards and six packinghouses. In the second part of this study, the systems approach was accordingly revised and improved, consisting of three measures: 1) preharvest controls and measurements and postpicking sampling, inspection, and packinghouse procedures; 2) postpacking sampling and inspection; and 3) shipping conditions. The model quantifying the effectiveness of the systems approach was improved by correcting errors in the original version, updating parameter values and adding a component that provides for comparison with the risk mitigation provided by a standalone disinfestation treatment. Consequently, the maximum potential proportion of fruit that may be infested with live T. leucotreta after application of the improved systems approach is no greater than the proportion of fruit that may be infested after application of a Probit 9 efficacy postharvest disinfestation treatment to fruit with a 2% pretreatment infestation. The probability of a mating pair surviving is also determined. The model enables a priori determination of the required threshold levels for any of the three measures, based on quantification of the other two measures.
- Full Text:
- Date Issued: 2020
- Authors: Hattingh, Vaughan , Moore, Sean D , Kirkman, Wayne , Goddard, Mathew K , Thackeray, Sean R , Peyper, Mellissa , Sharp, Gary , Cronjé, Paul , Pringle, Ken
- Date: 2020
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/423700 , vital:72086 , xlink:href="https://doi.org/10.1093/jee/toz336"
- Description: A systems approach was previously developed for mitigating phytosanitary risk of Thaumatotibia leucotreta (Meyrick) in citrus fruit exported from South Africa, as an alternative to a standalone cold disinfestation treatment. The present study first tested the original systems approach by applying it on a semicommercial scale in 10 Nova mandarin orchards. Fruit were inspected at points in the production, packing, and simulated shipping process, to assess performance of the systems approach. Additional data were obtained from 17 Valencia orange orchards and six packinghouses. In the second part of this study, the systems approach was accordingly revised and improved, consisting of three measures: 1) preharvest controls and measurements and postpicking sampling, inspection, and packinghouse procedures; 2) postpacking sampling and inspection; and 3) shipping conditions. The model quantifying the effectiveness of the systems approach was improved by correcting errors in the original version, updating parameter values and adding a component that provides for comparison with the risk mitigation provided by a standalone disinfestation treatment. Consequently, the maximum potential proportion of fruit that may be infested with live T. leucotreta after application of the improved systems approach is no greater than the proportion of fruit that may be infested after application of a Probit 9 efficacy postharvest disinfestation treatment to fruit with a 2% pretreatment infestation. The probability of a mating pair surviving is also determined. The model enables a priori determination of the required threshold levels for any of the three measures, based on quantification of the other two measures.
- Full Text:
- Date Issued: 2020
Development of a Postharvest Cold Treatment for Cryptophlebia peltastica (Lepidoptera: Tortricidae) for Export of Litchis From South Africa
- Moore, Sean D, Kirkman, Wayne, Peyper, Mellissa, Thackeray, Sean R, Marsberg, Tamryn, Albertyn, Sonnica, Hill, Martin P
- Authors: Moore, Sean D , Kirkman, Wayne , Peyper, Mellissa , Thackeray, Sean R , Marsberg, Tamryn , Albertyn, Sonnica , Hill, Martin P
- Date: 2018
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/423729 , vital:72089 , xlink:href="https://doi.org/10.1093/jee/toy287"
- Description: The litchi moth, Cryptophlebia peltastica (Meyrick) (Lepidoptera: Tortricidae), is endemic to sub-Saharan Africa and certain Indian Ocean islands. It is an important pest of litchis and to a lesser extent macadamias. Litchis are exported to certain markets that consider C. peltastica as a phytosanitary pest. Consequently, an effective postharvest phytosanitary treatment is required. This study sought to develop a cold disinfestation treatment for this purpose. First, it was established that the fifth instar was the most cold-tolerant larval stage, as it was the only instar for which there was still some survival after 12 d at 1°C. It was then determined that cold treatment trials could be conducted in artificial diet, as there was no survival of fifth instar C. peltastica in litchis after only 9 d at 1°C, whereas it took 15 d at this temperature before no survival of fifth instar C. peltastica was recorded in artificial diet. Consequently, cold susceptibility of fifth instar C. peltastica and the most cold-tolerant larval stages (fourth and fifth instar) of false codling moth, Thaumatotibia leucotreta (Meyrick) (Lepidoptera: Tortricidae), were compared in artificial diet. There was no survival of C. peltastica after 13 d at 1°C, whereas this was only so for T. leucotreta after 16 d. Consequently, it can be concluded that any cold treatment that has been proven effective against T. leucotreta would be as effective against C. peltastica. Finally, it was confirmed that the cold susceptibility of T. leucotreta in artificial diet did not overestimate the effect of cold on T. leucotreta larvae in litchis.
- Full Text:
- Date Issued: 2018
- Authors: Moore, Sean D , Kirkman, Wayne , Peyper, Mellissa , Thackeray, Sean R , Marsberg, Tamryn , Albertyn, Sonnica , Hill, Martin P
- Date: 2018
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/423729 , vital:72089 , xlink:href="https://doi.org/10.1093/jee/toy287"
- Description: The litchi moth, Cryptophlebia peltastica (Meyrick) (Lepidoptera: Tortricidae), is endemic to sub-Saharan Africa and certain Indian Ocean islands. It is an important pest of litchis and to a lesser extent macadamias. Litchis are exported to certain markets that consider C. peltastica as a phytosanitary pest. Consequently, an effective postharvest phytosanitary treatment is required. This study sought to develop a cold disinfestation treatment for this purpose. First, it was established that the fifth instar was the most cold-tolerant larval stage, as it was the only instar for which there was still some survival after 12 d at 1°C. It was then determined that cold treatment trials could be conducted in artificial diet, as there was no survival of fifth instar C. peltastica in litchis after only 9 d at 1°C, whereas it took 15 d at this temperature before no survival of fifth instar C. peltastica was recorded in artificial diet. Consequently, cold susceptibility of fifth instar C. peltastica and the most cold-tolerant larval stages (fourth and fifth instar) of false codling moth, Thaumatotibia leucotreta (Meyrick) (Lepidoptera: Tortricidae), were compared in artificial diet. There was no survival of C. peltastica after 13 d at 1°C, whereas this was only so for T. leucotreta after 16 d. Consequently, it can be concluded that any cold treatment that has been proven effective against T. leucotreta would be as effective against C. peltastica. Finally, it was confirmed that the cold susceptibility of T. leucotreta in artificial diet did not overestimate the effect of cold on T. leucotreta larvae in litchis.
- Full Text:
- Date Issued: 2018
Biology and rearing of Ectomyeolis ceratoniae Zeller (Lepidoptera: Pyralidae) carob moth, a pest of multiple crops in South Africa
- Thackeray, Sean R, Moore, Sean D, Strathie, Lorraine W, Kirkman, Wayne, Hill, Martin P
- Authors: Thackeray, Sean R , Moore, Sean D , Strathie, Lorraine W , Kirkman, Wayne , Hill, Martin P
- Date: 2017
- Language: English
- Type: article , text
- Identifier: http://hdl.handle.net/10962/59799 , vital:27652 , https://doi.org/10.4001/003.025.0474
- Description: Ectomyeolis ceratoniae Zeller (Lepidoptera: Pyralidae), carob moth, is a pest of several crops in South Africa. A laboratory culture was established from field-collected larvae infesting mummified pecan nuts. Biological parameters of larvae reared on an artificial diet were measured. The insect goes through five larval instars, and the head capsule sizes of the five instars were determined to be <0.34 mm, 0.35-0.64 mm, 0.65-0.94 mm, 0.95-1.14 mm and >0.15 mm for the five instars, respectively. The insect was reared individually and communally in glass vials, the latter to develop a mass-rearing technique. Developmental time from neonate to pupa was significantly slower when larvae were individually reared (38.18 ±1.2 days) compared to when they were communally reared (24.6 ± 0.65 days). A microsporidian infection (Nosema sp.) was recorded in the culture, causing significantly (fy6 = 14.99, P = 0.0082) higher mortality of communally reared larvae (76.25 % ± 11.87) than individually reared larvae (24.9 % ± 9.6).
- Full Text:
- Date Issued: 2017
- Authors: Thackeray, Sean R , Moore, Sean D , Strathie, Lorraine W , Kirkman, Wayne , Hill, Martin P
- Date: 2017
- Language: English
- Type: article , text
- Identifier: http://hdl.handle.net/10962/59799 , vital:27652 , https://doi.org/10.4001/003.025.0474
- Description: Ectomyeolis ceratoniae Zeller (Lepidoptera: Pyralidae), carob moth, is a pest of several crops in South Africa. A laboratory culture was established from field-collected larvae infesting mummified pecan nuts. Biological parameters of larvae reared on an artificial diet were measured. The insect goes through five larval instars, and the head capsule sizes of the five instars were determined to be <0.34 mm, 0.35-0.64 mm, 0.65-0.94 mm, 0.95-1.14 mm and >0.15 mm for the five instars, respectively. The insect was reared individually and communally in glass vials, the latter to develop a mass-rearing technique. Developmental time from neonate to pupa was significantly slower when larvae were individually reared (38.18 ±1.2 days) compared to when they were communally reared (24.6 ± 0.65 days). A microsporidian infection (Nosema sp.) was recorded in the culture, causing significantly (fy6 = 14.99, P = 0.0082) higher mortality of communally reared larvae (76.25 % ± 11.87) than individually reared larvae (24.9 % ± 9.6).
- Full Text:
- Date Issued: 2017
Partial cold treatment of citrus fruit for export risk mitigation for Thaumatotibia leucotreta (Lepidoptera: Tortricidae) as part of a systems approach
- Moore, Sean D, Kirkman, Wayne, Albertyn, Sonnica, Love, C N, Coetzee, Julie A, Hattingh, Vaughan
- Authors: Moore, Sean D , Kirkman, Wayne , Albertyn, Sonnica , Love, C N , Coetzee, Julie A , Hattingh, Vaughan
- Date: 2016
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/423796 , vital:72094 , xlink:href="https://doi.org/10.1093/jee/tow138"
- Description: Some of South Africa’s citrus export markets require mandatory postharvest cold treatment of citrus fruit as a phytosanitary risk mitigation treatment for Thaumatotibia leucotreta (Meyrick) (Lepidoptera: Tortricidae). An alternative to this may be partial cold treatment as one of the final steps in a systems approach to mitigate phytosanitary risk. Consequently, the efficacy of such partial cold treatments was evaluated. It was first determined that a 2C cold treatment was significantly more effective against fourth and fifth instars (the most cold-tolerant instars) than treatments at 3C and 4C for a duration of 18 d. Secondly, it was determined that 2C for 18 d and 1C for 16 d were similarly effective, but both treatments were significantly more effective than 1C for 14 d. Mean mortality of fourth and fifth instars treated with 2C for 18 d in seven replicates from four trials was 99.94%. Finally, it was determined that the inability of the majority of surviving larvae to develop to adulthood would further increase the efficacy of a 2C for 18 d treatment to 99.96%. Inclusion of reproductive nonviability of survivors increased mortality to 99.99%.
- Full Text:
- Date Issued: 2016
- Authors: Moore, Sean D , Kirkman, Wayne , Albertyn, Sonnica , Love, C N , Coetzee, Julie A , Hattingh, Vaughan
- Date: 2016
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/423796 , vital:72094 , xlink:href="https://doi.org/10.1093/jee/tow138"
- Description: Some of South Africa’s citrus export markets require mandatory postharvest cold treatment of citrus fruit as a phytosanitary risk mitigation treatment for Thaumatotibia leucotreta (Meyrick) (Lepidoptera: Tortricidae). An alternative to this may be partial cold treatment as one of the final steps in a systems approach to mitigate phytosanitary risk. Consequently, the efficacy of such partial cold treatments was evaluated. It was first determined that a 2C cold treatment was significantly more effective against fourth and fifth instars (the most cold-tolerant instars) than treatments at 3C and 4C for a duration of 18 d. Secondly, it was determined that 2C for 18 d and 1C for 16 d were similarly effective, but both treatments were significantly more effective than 1C for 14 d. Mean mortality of fourth and fifth instars treated with 2C for 18 d in seven replicates from four trials was 99.94%. Finally, it was determined that the inability of the majority of surviving larvae to develop to adulthood would further increase the efficacy of a 2C for 18 d treatment to 99.96%. Inclusion of reproductive nonviability of survivors increased mortality to 99.99%.
- Full Text:
- Date Issued: 2016
The host status of lemons for the false codling moth, Thaumatotibia leucotreta (Meyrick)(Lepidoptera: Tortricidae) with particular reference to export protocols
- Moore, Sean D, Kirkman, Wayne, Hattingh, Vaughan
- Authors: Moore, Sean D , Kirkman, Wayne , Hattingh, Vaughan
- Date: 2015
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/452252 , vital:75115 , https://hdl.handle.net/10520/EJC176581
- Description: The South African citrus industry is dependent on export of fresh fruit to many markets around the world, with approximately 70% of South Africa's citrus crop being exported (CGA 2013). The false codling moth, Thaumatotibia leucotreta (Meyrick) (Lepidoptera: Tortricidae), is recorded as a pest of citrus fruit in southern Africa (Newton 1998; Grout and Moore 2015). As a result of its endemism to sub-Saharan Africa (Moore 2002), certain export markets of importance for the South African citrus industry, such as Peoples Republic of China, U.S.A. and South Korea, regulate it as a quarantine pest.Control of the pest in the field can be highly effective, using a suite of integrated control options, applied with diligent management (Moore and Hattingh 2012). These can succeed in reducing T. leucotreta infestation by 97% or more (Moore et al. 2015). Such an integrated system, using the sterile insect technique as the mainstay of the programme, has succeeded in reducing moth catches by 99%, fruit infestation by 96% and export rejections by 89% in the Western Cape Province of South Africa, since the inception of the programme in 2007 (Barnes et al. 2015).
- Full Text:
- Date Issued: 2015
- Authors: Moore, Sean D , Kirkman, Wayne , Hattingh, Vaughan
- Date: 2015
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/452252 , vital:75115 , https://hdl.handle.net/10520/EJC176581
- Description: The South African citrus industry is dependent on export of fresh fruit to many markets around the world, with approximately 70% of South Africa's citrus crop being exported (CGA 2013). The false codling moth, Thaumatotibia leucotreta (Meyrick) (Lepidoptera: Tortricidae), is recorded as a pest of citrus fruit in southern Africa (Newton 1998; Grout and Moore 2015). As a result of its endemism to sub-Saharan Africa (Moore 2002), certain export markets of importance for the South African citrus industry, such as Peoples Republic of China, U.S.A. and South Korea, regulate it as a quarantine pest.Control of the pest in the field can be highly effective, using a suite of integrated control options, applied with diligent management (Moore and Hattingh 2012). These can succeed in reducing T. leucotreta infestation by 97% or more (Moore et al. 2015). Such an integrated system, using the sterile insect technique as the mainstay of the programme, has succeeded in reducing moth catches by 99%, fruit infestation by 96% and export rejections by 89% in the Western Cape Province of South Africa, since the inception of the programme in 2007 (Barnes et al. 2015).
- Full Text:
- Date Issued: 2015
Subterranean control of an arboreal pest: EPNs and EPFs for FCM
- Moore, Sean D, Coombes, Candice A, Manrakhan, Aruna, Kirkman, Wayne, Hill, Martin P, Ehlers, Ralf-Udo, Daneel, John-Henry, De Waal, Jeanne, Dames, Joanna F, Malan, Antoinette P
- Authors: Moore, Sean D , Coombes, Candice A , Manrakhan, Aruna , Kirkman, Wayne , Hill, Martin P , Ehlers, Ralf-Udo , Daneel, John-Henry , De Waal, Jeanne , Dames, Joanna F , Malan, Antoinette P
- Date: 2013
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/425450 , vital:72241 , xlink:href="https://www.cabdirect.org/cabdirect/abstract/20133257699"
- Description: Control measures against the false codling moth (FCM), Thaumatotibia leucotreta, have traditionally ignored the soil-borne pupal stage. Recent trials with entomopathogenic nematodes (EPNs) and entomopathogenic fungi (EPFs) have targeted this life-stage. Application of Heterorhabditis bacteriophora to a citrus orchard floor, reduced T. leucotreta infestation of fruit by up to 81%. Conservation of H. zealandica through non-usage of a nematicide also resulted in dramatically lower fruit infestation. Dose-response and exposure time-response bioassays identified the three most promising fungal isolates against pupating T. leucotreta. Orchard trials showed persistence of these fungi in orchard soil for at least six months.
- Full Text:
- Date Issued: 2013
- Authors: Moore, Sean D , Coombes, Candice A , Manrakhan, Aruna , Kirkman, Wayne , Hill, Martin P , Ehlers, Ralf-Udo , Daneel, John-Henry , De Waal, Jeanne , Dames, Joanna F , Malan, Antoinette P
- Date: 2013
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/425450 , vital:72241 , xlink:href="https://www.cabdirect.org/cabdirect/abstract/20133257699"
- Description: Control measures against the false codling moth (FCM), Thaumatotibia leucotreta, have traditionally ignored the soil-borne pupal stage. Recent trials with entomopathogenic nematodes (EPNs) and entomopathogenic fungi (EPFs) have targeted this life-stage. Application of Heterorhabditis bacteriophora to a citrus orchard floor, reduced T. leucotreta infestation of fruit by up to 81%. Conservation of H. zealandica through non-usage of a nematicide also resulted in dramatically lower fruit infestation. Dose-response and exposure time-response bioassays identified the three most promising fungal isolates against pupating T. leucotreta. Orchard trials showed persistence of these fungi in orchard soil for at least six months.
- Full Text:
- Date Issued: 2013
Understanding and improving the residual efficacy of the cryptophlebia leucotreta granulovirus (Cryptogran)
- Authors: Kirkman, Wayne
- Date: 2008
- Subjects: Cryptophlebia leucotreta , Cryptophlebia leucotreta -- Control , Pests -- Biological control , Citrus -- Diseases and pests
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: vital:5794 , http://hdl.handle.net/10962/d1005482 , Cryptophlebia leucotreta , Cryptophlebia leucotreta -- Control , Pests -- Biological control , Citrus -- Diseases and pests
- Description: False codling moth (FCM), Thaumatotibia (=Cryptophlebia) leucotreta (Meyr) (Lepidoptera: Tortricidae), is one of the most important pests on citrus. The Cryptophlebia leucotreta granulovirus (CrleGV) has been developed into a successful biological control agent, registered under the name Cryptogran, and is currently the preferred product for the control of FCM on citrus in South Africa. A prerequisite to the continued success of Cryptogran as a means of controlling false codling moth is to understand the factors affecting field persistence of the virus, and to find ways to improve it. The aim of this study was to gain a clearer understanding of the product and the abiotic and biotic factors affecting its persistence in the field, and to investigate methods to improve this persistence. The effect of UV-irradiation on the virus was determined, and various products were tested as UV protectants in laboratory bioassays. Lignin was the most effective additive, and was tested in several field trials, where it also enhanced the efficacy of Cryptogran. Laboratory trials indicated that Cryptogran is rainfast. Cryptogran applications early in the season had a longer period of residual activity than sprays applied closer to harvest. Daytime applications were less effective that evening sprays. Sprays applied coinciding with peaks in pheromone moth trap catches were more effective than those applied between peaks. Biotic factors influencing persistence were investigated. Residual efficacy was longer when treatments were applied to blocks than as single tree treatments. Attempts were made to quantify the effect of the navel end of a navel orange on the field persistence of Cryptogran. Cryptogran was shown to be compatible with many agricultural chemicals used on citrus. Economic thresholds and various cost-benefit analyses are discussed. A list of practical recommendations to growers was drawn up, and possibilities for future research are presented.
- Full Text:
- Date Issued: 2008
- Authors: Kirkman, Wayne
- Date: 2008
- Subjects: Cryptophlebia leucotreta , Cryptophlebia leucotreta -- Control , Pests -- Biological control , Citrus -- Diseases and pests
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: vital:5794 , http://hdl.handle.net/10962/d1005482 , Cryptophlebia leucotreta , Cryptophlebia leucotreta -- Control , Pests -- Biological control , Citrus -- Diseases and pests
- Description: False codling moth (FCM), Thaumatotibia (=Cryptophlebia) leucotreta (Meyr) (Lepidoptera: Tortricidae), is one of the most important pests on citrus. The Cryptophlebia leucotreta granulovirus (CrleGV) has been developed into a successful biological control agent, registered under the name Cryptogran, and is currently the preferred product for the control of FCM on citrus in South Africa. A prerequisite to the continued success of Cryptogran as a means of controlling false codling moth is to understand the factors affecting field persistence of the virus, and to find ways to improve it. The aim of this study was to gain a clearer understanding of the product and the abiotic and biotic factors affecting its persistence in the field, and to investigate methods to improve this persistence. The effect of UV-irradiation on the virus was determined, and various products were tested as UV protectants in laboratory bioassays. Lignin was the most effective additive, and was tested in several field trials, where it also enhanced the efficacy of Cryptogran. Laboratory trials indicated that Cryptogran is rainfast. Cryptogran applications early in the season had a longer period of residual activity than sprays applied closer to harvest. Daytime applications were less effective that evening sprays. Sprays applied coinciding with peaks in pheromone moth trap catches were more effective than those applied between peaks. Biotic factors influencing persistence were investigated. Residual efficacy was longer when treatments were applied to blocks than as single tree treatments. Attempts were made to quantify the effect of the navel end of a navel orange on the field persistence of Cryptogran. Cryptogran was shown to be compatible with many agricultural chemicals used on citrus. Economic thresholds and various cost-benefit analyses are discussed. A list of practical recommendations to growers was drawn up, and possibilities for future research are presented.
- Full Text:
- Date Issued: 2008
- «
- ‹
- 1
- ›
- »