Composite polyester membranes with embedded dendrimer hosts and bimetallic Fe/Ni nanoparticles: synthesis, characterisation and application to water treatment
- Malinga, S P, Arotiba, O A, Mapolie, S F, Krause, Rui W M, Mamba, Bhekie B, Diallo, M S
- Authors: Malinga, S P , Arotiba, O A , Mapolie, S F , Krause, Rui W M , Mamba, Bhekie B , Diallo, M S
- Date: 2013
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/125086 , vital:35727 , https://doi.org/10.1007/s11051-013-1698-y
- Description: This study describes the preparation, characterization and evaluation of new composite membranes with embedded dendrimer hosts and Fe/Ni nanoparticles. These new reactive membranes consist of films of cyclodextrin–poly(propyleneimine) dendrimers (β-CD–PPI) that are deposited onto commercial polysulfone microporous supports and crosslinked with trimesoyl chloride (TMC). The membranes were subsequently loaded with Fe/Ni nanoparticles and evaluated as separation/reactive media in aqueous solutions using 2,4,6-trichlorophenol as model pollutant. The morphology and physicochemical properties of the composite membranes were characterised using high-resolution transmission electron microscopy (HR-TEM), atomic force microscopy and measurements of contact angle, water intake, porosity and water permeability. The sorption capacity and catalytic activity of the membranes were evaluated using ion chromatography, atmospheric pressure chemical ionisation-mass spectrometry and UV–Vis spectroscopy (UV–Vis). The sizes of the embedded Fe/Ni nanoparticles in the membranes ranged from 40 to 66 nm as confirmed by HR-TEM. The reaction rates for the dechlorination of 2,4,6-trichlorophenol ranged from 0.00148 to 0.00250 min−1. In all cases, we found that the reaction by-products consisted of chloride ions and mixtures of compounds including phenol (m/z = 93), 2,4-dichlorophenol (m/z = 163) and 4-chlorophenol (m/z = 128). The overall results of this study suggest that β-CD–PPI dendrimers are promising building blocks for the synthesis of composite and reactive membranes for the efficient removal of chlorinated organic pollutants from water.
- Full Text:
- Date Issued: 2013
- Authors: Malinga, S P , Arotiba, O A , Mapolie, S F , Krause, Rui W M , Mamba, Bhekie B , Diallo, M S
- Date: 2013
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/125086 , vital:35727 , https://doi.org/10.1007/s11051-013-1698-y
- Description: This study describes the preparation, characterization and evaluation of new composite membranes with embedded dendrimer hosts and Fe/Ni nanoparticles. These new reactive membranes consist of films of cyclodextrin–poly(propyleneimine) dendrimers (β-CD–PPI) that are deposited onto commercial polysulfone microporous supports and crosslinked with trimesoyl chloride (TMC). The membranes were subsequently loaded with Fe/Ni nanoparticles and evaluated as separation/reactive media in aqueous solutions using 2,4,6-trichlorophenol as model pollutant. The morphology and physicochemical properties of the composite membranes were characterised using high-resolution transmission electron microscopy (HR-TEM), atomic force microscopy and measurements of contact angle, water intake, porosity and water permeability. The sorption capacity and catalytic activity of the membranes were evaluated using ion chromatography, atmospheric pressure chemical ionisation-mass spectrometry and UV–Vis spectroscopy (UV–Vis). The sizes of the embedded Fe/Ni nanoparticles in the membranes ranged from 40 to 66 nm as confirmed by HR-TEM. The reaction rates for the dechlorination of 2,4,6-trichlorophenol ranged from 0.00148 to 0.00250 min−1. In all cases, we found that the reaction by-products consisted of chloride ions and mixtures of compounds including phenol (m/z = 93), 2,4-dichlorophenol (m/z = 163) and 4-chlorophenol (m/z = 128). The overall results of this study suggest that β-CD–PPI dendrimers are promising building blocks for the synthesis of composite and reactive membranes for the efficient removal of chlorinated organic pollutants from water.
- Full Text:
- Date Issued: 2013
Mg/Triethylammonium Formate: A Useful System for Reductive Dimerization of Araldehydes into Pinacols;Nitroarenes into Azoarenes and Azoarenes into Hydrazoarenes
- Pamar, M Geeter, Govender, P, Muthusamy, K, Krause, Rui W M
- Authors: Pamar, M Geeter , Govender, P , Muthusamy, K , Krause, Rui W M
- Date: 2013
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/125107 , vital:35729 , https://doi.org/10.13005/ojc/290316
- Description: Studies are reported which describes the effectiveness of triethylammonium formate in the presence of magnesium for the efficient intermolecular pinacol coupling using MeOH as solvent. Various aromatic carbonyls underwent smooth reductive coupling to give the corresponding 1,2-diols. A series of azo compounds were obtained by the reductive coupling of nitroaromatics while azo compounds were reduced to the corresponding hydrazoarenes by this system. There was no adverse effect on the other reducible and hydrogenolysable groups such as ether linkage, hydroxy and halogens. The reactions are clean, high yielding and inexpensive. All the reactions proceeded smoothly at ambient temperature.
- Full Text:
- Date Issued: 2013
- Authors: Pamar, M Geeter , Govender, P , Muthusamy, K , Krause, Rui W M
- Date: 2013
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/125107 , vital:35729 , https://doi.org/10.13005/ojc/290316
- Description: Studies are reported which describes the effectiveness of triethylammonium formate in the presence of magnesium for the efficient intermolecular pinacol coupling using MeOH as solvent. Various aromatic carbonyls underwent smooth reductive coupling to give the corresponding 1,2-diols. A series of azo compounds were obtained by the reductive coupling of nitroaromatics while azo compounds were reduced to the corresponding hydrazoarenes by this system. There was no adverse effect on the other reducible and hydrogenolysable groups such as ether linkage, hydroxy and halogens. The reactions are clean, high yielding and inexpensive. All the reactions proceeded smoothly at ambient temperature.
- Full Text:
- Date Issued: 2013
Nanostructured β-cyclodextrin-hyperbranched polyethyleneimine (β-CD-HPEI) embedded in polysulfone membrane for the removal of humic acid from water
- Malinga, S P, Arotiba, O A, Mapolie, S F, Diallo, M S, Mamba, Bhekie B, Krause, Rui W M
- Authors: Malinga, S P , Arotiba, O A , Mapolie, S F , Diallo, M S , Mamba, Bhekie B , Krause, Rui W M
- Date: 2013
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/125119 , vital:35732 , https://doi.org/10.1080/01496395.2013.809108
- Description: The synthesis of a new β-cyclodextrin-hyperbranched polyethyleneimine (β-CD-HPEI)/polysulfone (PSf) membranes via interfacial polymerization of trimesoyl chloride and β-CD-HPEI is described in this paper. The membranes were characterized by atomic force microscopy (AFM), high resolution scanning electron microscopy (HR-SEM) and contact-angle measurements. Water permeability and rejection data were obtained using a cross-flow filtration system at 0.69 MPa. The membranes were hydrophilic (25° to 63°), showed high humic acid rejection (>amp;80%), and maintained a constant flux throughout the filtration. The modified membranes were rougher than the pristine PSf membranes but they exhibited better antifouling properties due to the hydrophilic surface which acted as a barrier against humic acid deposition. The modification of PSf with β-CD-HPEI resulted in enhanced hydrophilicity and water permeability while still maintaining high humic acid rejection. Supplemental materials are available for this article. Go to the publisher's online edition of Separation Science & Technology to view the supplemental file.
- Full Text:
- Date Issued: 2013
- Authors: Malinga, S P , Arotiba, O A , Mapolie, S F , Diallo, M S , Mamba, Bhekie B , Krause, Rui W M
- Date: 2013
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/125119 , vital:35732 , https://doi.org/10.1080/01496395.2013.809108
- Description: The synthesis of a new β-cyclodextrin-hyperbranched polyethyleneimine (β-CD-HPEI)/polysulfone (PSf) membranes via interfacial polymerization of trimesoyl chloride and β-CD-HPEI is described in this paper. The membranes were characterized by atomic force microscopy (AFM), high resolution scanning electron microscopy (HR-SEM) and contact-angle measurements. Water permeability and rejection data were obtained using a cross-flow filtration system at 0.69 MPa. The membranes were hydrophilic (25° to 63°), showed high humic acid rejection (>amp;80%), and maintained a constant flux throughout the filtration. The modified membranes were rougher than the pristine PSf membranes but they exhibited better antifouling properties due to the hydrophilic surface which acted as a barrier against humic acid deposition. The modification of PSf with β-CD-HPEI resulted in enhanced hydrophilicity and water permeability while still maintaining high humic acid rejection. Supplemental materials are available for this article. Go to the publisher's online edition of Separation Science & Technology to view the supplemental file.
- Full Text:
- Date Issued: 2013
Synthesis and magnetic properties of a superparamagnetic nanocomposite pectin-magnetite nanocomposite
- Namanga, Jude, Foba, Josepha, Ndinteh, Derek T, Yufanyi, Divine M, Krause, Rui W M
- Authors: Namanga, Jude , Foba, Josepha , Ndinteh, Derek T , Yufanyi, Divine M , Krause, Rui W M
- Date: 2013
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/125075 , vital:35726 , https://doi.org/10.1155/2013/137275
- Description: Magnetic nanocomposites composed of superparamagnetic magnetite nanoparticles in a pectin matrix were synthesized by anin situ coprecipitation method. The pectin matrix acted as a stabilizer and size control host for the magnetite nanoparticles(MNPs) ensuring particle size homogeneity. The effects of the different reactant ratios and nanocomposite drying conditions onthe magnetic properties were investigated. The nanocomposites were characterized by X-ray diffraction (XRD), scanning electronmicroscopy (SEM), transmission electron microscopy (TEM), energy dispersive X-ray spectroscopy (EDX), Fourier-transforminfrared (FT-IR) spectroscopy, and superconducting quantum interference device magnetometer (SQUID). Superparamagneticmagnetite nanoparticles with mean diameters of 9 and 13 nm were obtained, and the freeze-dried nanocomposites had a saturationmagnetization of 54 and 53 emu/g, respectivel
- Full Text:
- Date Issued: 2013
- Authors: Namanga, Jude , Foba, Josepha , Ndinteh, Derek T , Yufanyi, Divine M , Krause, Rui W M
- Date: 2013
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/125075 , vital:35726 , https://doi.org/10.1155/2013/137275
- Description: Magnetic nanocomposites composed of superparamagnetic magnetite nanoparticles in a pectin matrix were synthesized by anin situ coprecipitation method. The pectin matrix acted as a stabilizer and size control host for the magnetite nanoparticles(MNPs) ensuring particle size homogeneity. The effects of the different reactant ratios and nanocomposite drying conditions onthe magnetic properties were investigated. The nanocomposites were characterized by X-ray diffraction (XRD), scanning electronmicroscopy (SEM), transmission electron microscopy (TEM), energy dispersive X-ray spectroscopy (EDX), Fourier-transforminfrared (FT-IR) spectroscopy, and superconducting quantum interference device magnetometer (SQUID). Superparamagneticmagnetite nanoparticles with mean diameters of 9 and 13 nm were obtained, and the freeze-dried nanocomposites had a saturationmagnetization of 54 and 53 emu/g, respectivel
- Full Text:
- Date Issued: 2013
- «
- ‹
- 1
- ›
- »