Phthalocyanine-nanoparticle conjugates supported on inorganic nanofibers as photocatalysts for the treatment of biological and organic pollutants as well as for hydrogen generation
- Authors: Mapukata, Sivuyisiwe
- Date: 2021-10-29
- Subjects: Phthalocyanines , Nanofibers , Nanoparticles , Zinc , Hydrogen , Organic water pollutants , Water Purification , Electrospinning , Photocatalysis , Photodegradation , Anti-infective agents
- Language: English
- Type: Doctoral theses , text
- Identifier: http://hdl.handle.net/10962/192831 , vital:45268 , 10.21504/10962/192831
- Description: This thesis reports on the synthesis, photophysicochemical and photocatalytic properties of various zinc phthalocyanines (Pcs). For enhanced properties and catalyst support, the reported Pcs were conjugated to different nanoparticles (NPs) through chemisorption as well as amide bond formation to yield Pc-NP conjugates. For increased catalyst surface area and catalyst reusability, the Pcs and some of their conjugates were also supported on electrospun inorganic nanofibers i.e. SiO2, hematite (abbreviated Hem and has formula α-Fe2O3), ZnO and TiO2 nanofibers. The effect that the number of charges on a Pc has on its antimicrobial activities was evaluated by comparing the photoactivities of neutral, octacationic and hexadecacationic Pcs against S. aureus, E. coli and C. albicans. The extent of enhancement of their antimicrobial activities upon conjugation (through chemisorption) to Ag NPs was also studied in solution and when supported on SiO2 nanofibers. The results showed that the hexadecacationic complex 3 possessed the best antimicrobial activity against all three microorganisms, in solution and when supported on the SiO2 nanofibers. Covalent conjugation of Pcs with carboxylic acid moieties (complexes 4-6) to amine functionalised NPs (Cys-Ag, NH2-Fe3O4 and Cys-Fe3O4@Ag) resulted in enhanced singlet oxygen generation and thus antibacterial efficiencies. Comparison of the photodegradation efficiencies of semiconductor nanofibers (hematite, ZnO and TiO2) when bare and when modified with a Pc (complex 6) were evaluated. Modification of the nanofibers with the Pc resulted in enhanced photoactivities for the nanofibers with the hematite nanofibers being the best. Modification of the hematite nanofibers with two different Pcs i.e. monosubstituted (complex 5) and an asymmetrical tetrasubstituted Pc (complex 6) showed that complex 6 better enhanced the activity of the nanofibers. Evaluation of the hydrogen generation efficiencies of the bare and modified TiO2 nanofibers calcined at different temperatures demonstrated that the anatase nanofibers calcined at 500 oC possessed the best catalytic efficiency. The efficiency of the TiO2 nanofibers was enhanced in the presence of the Co and Pd NPs as well as a Pc (complex 7), with the extent of enhancement being the greatest for the nanofibers modified with the Pd NPs. The reported findings therefore demonstrate the versatility of applications of Pcs for different water purification techniques when supported on different nanomaterials. , Thesis (PhD) -- Faculty of Science, Chemistry, 2021
- Full Text:
- Date Issued: 2021-10-29
- Authors: Mapukata, Sivuyisiwe
- Date: 2021-10-29
- Subjects: Phthalocyanines , Nanofibers , Nanoparticles , Zinc , Hydrogen , Organic water pollutants , Water Purification , Electrospinning , Photocatalysis , Photodegradation , Anti-infective agents
- Language: English
- Type: Doctoral theses , text
- Identifier: http://hdl.handle.net/10962/192831 , vital:45268 , 10.21504/10962/192831
- Description: This thesis reports on the synthesis, photophysicochemical and photocatalytic properties of various zinc phthalocyanines (Pcs). For enhanced properties and catalyst support, the reported Pcs were conjugated to different nanoparticles (NPs) through chemisorption as well as amide bond formation to yield Pc-NP conjugates. For increased catalyst surface area and catalyst reusability, the Pcs and some of their conjugates were also supported on electrospun inorganic nanofibers i.e. SiO2, hematite (abbreviated Hem and has formula α-Fe2O3), ZnO and TiO2 nanofibers. The effect that the number of charges on a Pc has on its antimicrobial activities was evaluated by comparing the photoactivities of neutral, octacationic and hexadecacationic Pcs against S. aureus, E. coli and C. albicans. The extent of enhancement of their antimicrobial activities upon conjugation (through chemisorption) to Ag NPs was also studied in solution and when supported on SiO2 nanofibers. The results showed that the hexadecacationic complex 3 possessed the best antimicrobial activity against all three microorganisms, in solution and when supported on the SiO2 nanofibers. Covalent conjugation of Pcs with carboxylic acid moieties (complexes 4-6) to amine functionalised NPs (Cys-Ag, NH2-Fe3O4 and Cys-Fe3O4@Ag) resulted in enhanced singlet oxygen generation and thus antibacterial efficiencies. Comparison of the photodegradation efficiencies of semiconductor nanofibers (hematite, ZnO and TiO2) when bare and when modified with a Pc (complex 6) were evaluated. Modification of the nanofibers with the Pc resulted in enhanced photoactivities for the nanofibers with the hematite nanofibers being the best. Modification of the hematite nanofibers with two different Pcs i.e. monosubstituted (complex 5) and an asymmetrical tetrasubstituted Pc (complex 6) showed that complex 6 better enhanced the activity of the nanofibers. Evaluation of the hydrogen generation efficiencies of the bare and modified TiO2 nanofibers calcined at different temperatures demonstrated that the anatase nanofibers calcined at 500 oC possessed the best catalytic efficiency. The efficiency of the TiO2 nanofibers was enhanced in the presence of the Co and Pd NPs as well as a Pc (complex 7), with the extent of enhancement being the greatest for the nanofibers modified with the Pd NPs. The reported findings therefore demonstrate the versatility of applications of Pcs for different water purification techniques when supported on different nanomaterials. , Thesis (PhD) -- Faculty of Science, Chemistry, 2021
- Full Text:
- Date Issued: 2021-10-29
Photocatalytic treatment of organic and inorganic water pollutants using zinc phthalocyanine-cobalt ferrite magnetic nanoparticle conjugates
- Authors: Mapukata, Sivuyisiwe
- Date: 2019
- Subjects: Phthalocyanines , Cobalt ferrite , Zinc , Nanoparticles
- Language: English
- Type: text , Thesis , Masters , MSc
- Identifier: http://hdl.handle.net/10962/67603 , vital:29119
- Description: This work explores the synthesis and photophysicochemical properties of zinc phthalocyanines when conjugated to cobalt ferrite magnetic nanoparticles. Phthalocyanines with amine and carboxylic acid functional groups were synthesised so as to covalently link them via amide bonds to cobalt ferrite magnetic nanoparticles with carboxylic acid and amine groups, respectively. Spectroscopic and microscopic studies confirmed the formation and purity of the phthalocyanine-cobalt ferrite magnetic nanoparticle conjugates which exhibited enhanced triplet and singlet quantum yields compared to the phthalocyanines alone. The studies showed that the presence of cobalt ferrite nanoparticles significantly lowered fluorescence quantum yields and lifetimes. The conjugates not only showed much higher singlet oxygen quantum yields compared to the phthalocyanines alone but were also attractive because of their magnetic regeneration and hence reusability properties, making them appealing for photocatalytic applications. The photocatalytic ability of some of the phthalocyanines and their conjugates were then tested based on their photooxidation and photoreduction abilities on Methyl Orange and hexavalent chromium, respectively. For catalyst support, some of the zinc phthalocyanines, cobalt ferrite magnetic nanoparticles and their respective conjugates were successfully incorporated into electrospun polystyrene and polyamide-6 fibers. Spectral characteristics of the functionalized electrospun fibers confirmed the incorporation of the photocatalysts and indicated that the phthalocyanines and their respective conjuagates remained intact with their integrity maintained within the polymeric fiber matrices. The photochemical properties of the complexes were equally maintained within the electrospun fibers hence they were applied in the photooxidation of azo dyes using Orange G and Methyl Orange as model organic compounds.
- Full Text:
- Date Issued: 2019
- Authors: Mapukata, Sivuyisiwe
- Date: 2019
- Subjects: Phthalocyanines , Cobalt ferrite , Zinc , Nanoparticles
- Language: English
- Type: text , Thesis , Masters , MSc
- Identifier: http://hdl.handle.net/10962/67603 , vital:29119
- Description: This work explores the synthesis and photophysicochemical properties of zinc phthalocyanines when conjugated to cobalt ferrite magnetic nanoparticles. Phthalocyanines with amine and carboxylic acid functional groups were synthesised so as to covalently link them via amide bonds to cobalt ferrite magnetic nanoparticles with carboxylic acid and amine groups, respectively. Spectroscopic and microscopic studies confirmed the formation and purity of the phthalocyanine-cobalt ferrite magnetic nanoparticle conjugates which exhibited enhanced triplet and singlet quantum yields compared to the phthalocyanines alone. The studies showed that the presence of cobalt ferrite nanoparticles significantly lowered fluorescence quantum yields and lifetimes. The conjugates not only showed much higher singlet oxygen quantum yields compared to the phthalocyanines alone but were also attractive because of their magnetic regeneration and hence reusability properties, making them appealing for photocatalytic applications. The photocatalytic ability of some of the phthalocyanines and their conjugates were then tested based on their photooxidation and photoreduction abilities on Methyl Orange and hexavalent chromium, respectively. For catalyst support, some of the zinc phthalocyanines, cobalt ferrite magnetic nanoparticles and their respective conjugates were successfully incorporated into electrospun polystyrene and polyamide-6 fibers. Spectral characteristics of the functionalized electrospun fibers confirmed the incorporation of the photocatalysts and indicated that the phthalocyanines and their respective conjuagates remained intact with their integrity maintained within the polymeric fiber matrices. The photochemical properties of the complexes were equally maintained within the electrospun fibers hence they were applied in the photooxidation of azo dyes using Orange G and Methyl Orange as model organic compounds.
- Full Text:
- Date Issued: 2019
- «
- ‹
- 1
- ›
- »