Development of a regional GPS-based ionospheric TEC model for South Africa
- Opperman, Ben D L, Cilliers, Pierre J, McKinnell, Lee-Anne, Haggard, Raymond
- Authors: Opperman, Ben D L , Cilliers, Pierre J , McKinnell, Lee-Anne , Haggard, Raymond
- Date: 2007
- Language: English
- Type: Article
- Identifier: vital:6799 , http://hdl.handle.net/10962/d1003925
- Description: Advances in South African space physics research and related disciplines require better spatial and time resolution ionospheric information than was previously possible with the existing ionosonde network. A GPS-based, variable degree adjusted spherical harmonic (ASHA) model was developed for near real-time regional ionospheric total electron content (TEC) mapping over South Africa. Slant TEC values along oblique GPS signal paths are quantified from a network of GPS receivers and converted to vertical TEC by means of the single layer mapping function. The ASHA model coefficients and GPS differential biases are estimated from vertical TEC at the ionospheric pierce points and used to interpolate TEC at any location within the region of interest. Diurnal TEC variations with one minute time resolution and time-varying 2D regional TEC maps are constructed. In order to validate the ASHA method, simulations with an IRI ionosphere were performed, while the ASHA results from actual data were compared with two independent GPS-based methodologies and measured ionosonde data.
- Full Text:
- Date Issued: 2007
- Authors: Opperman, Ben D L , Cilliers, Pierre J , McKinnell, Lee-Anne , Haggard, Raymond
- Date: 2007
- Language: English
- Type: Article
- Identifier: vital:6799 , http://hdl.handle.net/10962/d1003925
- Description: Advances in South African space physics research and related disciplines require better spatial and time resolution ionospheric information than was previously possible with the existing ionosonde network. A GPS-based, variable degree adjusted spherical harmonic (ASHA) model was developed for near real-time regional ionospheric total electron content (TEC) mapping over South Africa. Slant TEC values along oblique GPS signal paths are quantified from a network of GPS receivers and converted to vertical TEC by means of the single layer mapping function. The ASHA model coefficients and GPS differential biases are estimated from vertical TEC at the ionospheric pierce points and used to interpolate TEC at any location within the region of interest. Diurnal TEC variations with one minute time resolution and time-varying 2D regional TEC maps are constructed. In order to validate the ASHA method, simulations with an IRI ionosphere were performed, while the ASHA results from actual data were compared with two independent GPS-based methodologies and measured ionosonde data.
- Full Text:
- Date Issued: 2007
GPS TEC and ionosonde TEC over Grahamstown, South Africa: first comparisons
- McKinnell, Lee-Anne, Opperman, Ben D L, Cilliers, Pierre J
- Authors: McKinnell, Lee-Anne , Opperman, Ben D L , Cilliers, Pierre J
- Date: 2007
- Language: English
- Type: Article
- Identifier: vital:6800 , http://hdl.handle.net/10962/d1004163
- Description: The Grahamstown, South Africa (33.3°S, 26.5°E) ionospheric field station operates a UMass Lowell digital pulse ionospheric sounder (Digisonde) and an Ashtech geodetic grade dual frequency GPS receiver. The GPS receiver is owned by Chief Directorate Surveys and Mapping (CDSM) in Cape Town, forms part of the national TrigNet network and was installed in February 2005. The sampling rates of the GPS receiver and Digisonde were set to 1 s and 15 min, respectively. Data from four continuous months, March–June 2005 inclusive, were considered in this initial investigation. Data available from the Grahamstown GPS receiver was limited, and, therefore, only these 4 months have been considered. Total Electron Content (TEC) values were determined from GPS measurements obtained from satellites passing near vertical (within an 80° elevation) to the station. TEC values were obtained from ionograms recorded at times within 5 min of the near vertical GPS measurement. The GPS derived TEC values are referred to as GTEC and the ionogram derived TEC values as ITEC. Comparisons of GTEC and ITEC values are presented in this paper. The differential clock biases of the GPS satellites and receivers are taken into account. The plasmaspheric contribution to the TEC can be inferred from the results, and confirm findings obtained by other groups. This paper describes the groundwork for a procedure that will allow the validation of GPS derived ionospheric information with ionosonde data. This work will be of interest to the International Reference Ionosphere (IRI) community since GPS receivers are becoming recognised as another source for ionospheric information.
- Full Text:
- Date Issued: 2007
- Authors: McKinnell, Lee-Anne , Opperman, Ben D L , Cilliers, Pierre J
- Date: 2007
- Language: English
- Type: Article
- Identifier: vital:6800 , http://hdl.handle.net/10962/d1004163
- Description: The Grahamstown, South Africa (33.3°S, 26.5°E) ionospheric field station operates a UMass Lowell digital pulse ionospheric sounder (Digisonde) and an Ashtech geodetic grade dual frequency GPS receiver. The GPS receiver is owned by Chief Directorate Surveys and Mapping (CDSM) in Cape Town, forms part of the national TrigNet network and was installed in February 2005. The sampling rates of the GPS receiver and Digisonde were set to 1 s and 15 min, respectively. Data from four continuous months, March–June 2005 inclusive, were considered in this initial investigation. Data available from the Grahamstown GPS receiver was limited, and, therefore, only these 4 months have been considered. Total Electron Content (TEC) values were determined from GPS measurements obtained from satellites passing near vertical (within an 80° elevation) to the station. TEC values were obtained from ionograms recorded at times within 5 min of the near vertical GPS measurement. The GPS derived TEC values are referred to as GTEC and the ionogram derived TEC values as ITEC. Comparisons of GTEC and ITEC values are presented in this paper. The differential clock biases of the GPS satellites and receivers are taken into account. The plasmaspheric contribution to the TEC can be inferred from the results, and confirm findings obtained by other groups. This paper describes the groundwork for a procedure that will allow the validation of GPS derived ionospheric information with ionosonde data. This work will be of interest to the International Reference Ionosphere (IRI) community since GPS receivers are becoming recognised as another source for ionospheric information.
- Full Text:
- Date Issued: 2007
Mapping GPS-derived ionospheric Total Electron Content over Southern Africa during different epochs of solar cycle 23
- Moeketsi, D M, Combrinck, W L, McKinnell, Lee-Anne, Fedrizz, M
- Authors: Moeketsi, D M , Combrinck, W L , McKinnell, Lee-Anne , Fedrizz, M
- Date: 2007
- Language: English
- Type: Article
- Identifier: vital:6802 , http://hdl.handle.net/10962/d1004165
- Description: The Southern African Development Community and the International Global Navigation Satellite Systems Service (GNSS) network of dual frequency Global Positioning System (GPS) receivers provide an opportunity to determine Total Electron Content (TEC) over Southern Africa by taking advantage of the dispersive nature of the ionospheric medium. For this task, the University of New Brunswick (UNB) ionospheric modelling technique which applies a spatial linear approximation of the vertical TEC above each station using stochastic parameters in Kalman filter estimation, primed with data from the Southern Africa GPS network, was used for mapping TEC at South African locations during selected days and hours of different epochs of solar cycle 23. Significant enhancements in the TEC value and features, which could be associated with frequent solar events, are evident around a day of extreme solar maximum. These observations are discussed and further investigated by analyzing the GOES 8 and 10 satellites X-ray flux (0.1–0.8 nm) and SOHO Solar EUV Monitor (26.0–34.0 nm) higher resolution data. Comparison of these physical quantities reveals that for each X-ray flare observed, there is an associated EUV flare event. The latter phenomenon causes photoionisation in the daytime ionosphere which results in significant TEC enhancement. The daytime UNB TEC compared with the International Reference Ionosphere (IRI) 2001 predicted TEC found both models to show a good agreement.
- Full Text:
- Date Issued: 2007
- Authors: Moeketsi, D M , Combrinck, W L , McKinnell, Lee-Anne , Fedrizz, M
- Date: 2007
- Language: English
- Type: Article
- Identifier: vital:6802 , http://hdl.handle.net/10962/d1004165
- Description: The Southern African Development Community and the International Global Navigation Satellite Systems Service (GNSS) network of dual frequency Global Positioning System (GPS) receivers provide an opportunity to determine Total Electron Content (TEC) over Southern Africa by taking advantage of the dispersive nature of the ionospheric medium. For this task, the University of New Brunswick (UNB) ionospheric modelling technique which applies a spatial linear approximation of the vertical TEC above each station using stochastic parameters in Kalman filter estimation, primed with data from the Southern Africa GPS network, was used for mapping TEC at South African locations during selected days and hours of different epochs of solar cycle 23. Significant enhancements in the TEC value and features, which could be associated with frequent solar events, are evident around a day of extreme solar maximum. These observations are discussed and further investigated by analyzing the GOES 8 and 10 satellites X-ray flux (0.1–0.8 nm) and SOHO Solar EUV Monitor (26.0–34.0 nm) higher resolution data. Comparison of these physical quantities reveals that for each X-ray flare observed, there is an associated EUV flare event. The latter phenomenon causes photoionisation in the daytime ionosphere which results in significant TEC enhancement. The daytime UNB TEC compared with the International Reference Ionosphere (IRI) 2001 predicted TEC found both models to show a good agreement.
- Full Text:
- Date Issued: 2007
Neural network-based prediction techniques for global modeling of M(3000)F2 ionospheric parameter
- Oyeyemi, E O, McKinnell, Lee-Anne, Poole, Allon W V
- Authors: Oyeyemi, E O , McKinnell, Lee-Anne , Poole, Allon W V
- Date: 2007
- Language: English
- Type: text , Article
- Identifier: vital:6803 , http://hdl.handle.net/10962/d1004166
- Description: In recent times neural networks (NNs) have been employed to solve many problems in ionospheric predictions. This paper illustrates a new application of NNs in developing a global model of the ionospheric propagation factor M(3000)F2. NNs were trained with daily hourly values of M(3000)F2 from various ionospheric stations spanning the period 1964–1986 with the following temporal and spatial input parameters: Universal Time, geographic latitude, magnetic inclination, magnetic declination, solar zenith angle, day of the year, A16 index (a 2-day running mean of the 3-h planetary magnetic ap index), R2 index (a 2-month running mean of sunspot number), and the angle of meridian relative to the subsolar point. The performance of the NNs was verified by comparing the predicted values of M(3000)F2 with observed values from a few selected ionospheric stations and the IRI (International Reference Ionosphere) model (CCIR M(3000)F2 model) predicted values. The results obtained compared favourably with the IRI model. Based on the error differences, the result obtained justifies the potential of the NN technique for the predictions of M(3000)F2 values on a global scale.
- Full Text:
- Date Issued: 2007
- Authors: Oyeyemi, E O , McKinnell, Lee-Anne , Poole, Allon W V
- Date: 2007
- Language: English
- Type: text , Article
- Identifier: vital:6803 , http://hdl.handle.net/10962/d1004166
- Description: In recent times neural networks (NNs) have been employed to solve many problems in ionospheric predictions. This paper illustrates a new application of NNs in developing a global model of the ionospheric propagation factor M(3000)F2. NNs were trained with daily hourly values of M(3000)F2 from various ionospheric stations spanning the period 1964–1986 with the following temporal and spatial input parameters: Universal Time, geographic latitude, magnetic inclination, magnetic declination, solar zenith angle, day of the year, A16 index (a 2-day running mean of the 3-h planetary magnetic ap index), R2 index (a 2-month running mean of sunspot number), and the angle of meridian relative to the subsolar point. The performance of the NNs was verified by comparing the predicted values of M(3000)F2 with observed values from a few selected ionospheric stations and the IRI (International Reference Ionosphere) model (CCIR M(3000)F2 model) predicted values. The results obtained compared favourably with the IRI model. Based on the error differences, the result obtained justifies the potential of the NN technique for the predictions of M(3000)F2 values on a global scale.
- Full Text:
- Date Issued: 2007
- «
- ‹
- 1
- ›
- »