Biogeographic and nearshore–offshore trends in isotope ratios of intertidal mussels and their food sources around the coast of southern Africa
- Hill, Jaclyn M, McQuaid, Christopher D, Kaehler, Sven
- Authors: Hill, Jaclyn M , McQuaid, Christopher D , Kaehler, Sven
- Date: 2006
- Language: English
- Type: text , Article
- Identifier: vital:6878 , http://hdl.handle.net/10962/d1011633
- Description: There are broad differences in oceanography and primary production around the southern African coast that are likely to give rise to major differences in trophic pathways. Stable isotope ratios provide integrated information on trophic relationships, yet there has been limited research on geographic variation in isotopic composition of marine consumers and their food. In this study, δ13C and δ15N of suspended particulate matter (SPM), intertidal mussels and common macroalgae along the southern African coastline were explored. Nearshore–offshore isotope trends as well as biogeographic and temporal patterns in isotopic ratios of mussel tissue, macroalgae and SPM were investigated at 12 sites along the coast from Namibia to the Mozambique border. SPM exhibited overall trends of nearshore 13C depletion from south-west to north-east along the coastline and from nearshore (0 km) to offshore (10 km) waters, in both cases suggesting a shift from a nearshore signature strongly influenced by macroalgal detritus to one more representative of oceanic phytoplankton. With one exception it was possible, using discriminant analysis, to categorize mussel populations into 4 geographic groups, on the basis of both carbon and nitrogen signatures: the east coast, the south-east coast, the south-west coast and the west coast. Macroalgae showed no consistent biogeographic trends and need to be examined in greater detail to relate nearshore SPM values to living macroalgal signatures. A linear mixing model indicated that mussels along the entire coastline generally demonstrated more than 50% dependence on nearshore carbon and nitrogen, emphasizing the importance of nearshore primary production to intertidal consumers.
- Full Text:
- Authors: Hill, Jaclyn M , McQuaid, Christopher D , Kaehler, Sven
- Date: 2006
- Language: English
- Type: text , Article
- Identifier: vital:6878 , http://hdl.handle.net/10962/d1011633
- Description: There are broad differences in oceanography and primary production around the southern African coast that are likely to give rise to major differences in trophic pathways. Stable isotope ratios provide integrated information on trophic relationships, yet there has been limited research on geographic variation in isotopic composition of marine consumers and their food. In this study, δ13C and δ15N of suspended particulate matter (SPM), intertidal mussels and common macroalgae along the southern African coastline were explored. Nearshore–offshore isotope trends as well as biogeographic and temporal patterns in isotopic ratios of mussel tissue, macroalgae and SPM were investigated at 12 sites along the coast from Namibia to the Mozambique border. SPM exhibited overall trends of nearshore 13C depletion from south-west to north-east along the coastline and from nearshore (0 km) to offshore (10 km) waters, in both cases suggesting a shift from a nearshore signature strongly influenced by macroalgal detritus to one more representative of oceanic phytoplankton. With one exception it was possible, using discriminant analysis, to categorize mussel populations into 4 geographic groups, on the basis of both carbon and nitrogen signatures: the east coast, the south-east coast, the south-west coast and the west coast. Macroalgae showed no consistent biogeographic trends and need to be examined in greater detail to relate nearshore SPM values to living macroalgal signatures. A linear mixing model indicated that mussels along the entire coastline generally demonstrated more than 50% dependence on nearshore carbon and nitrogen, emphasizing the importance of nearshore primary production to intertidal consumers.
- Full Text:
Impacts of marine biogeographic boundaries on phylogeographic patterns of three South African estuarine crustaceans
- Teske, Peter R, McQuaid, Christopher D, Froneman, P William, Barker, Nigel P
- Authors: Teske, Peter R , McQuaid, Christopher D , Froneman, P William , Barker, Nigel P
- Date: 2006
- Language: English
- Type: Article
- Identifier: vital:6548 , http://hdl.handle.net/10962/d1006004 , http://dx.doi.org/10.3354/meps314283
- Description: The South African coastline comprises 3 main biogeographic provinces: (1) the cool-temperate west coast, (2) the warm-temperate south coast, and (3) the subtropical east coast. The boundaries between these regions are defined by changes in species compositions and hydrological conditions. It is possible that these affect phylogeographic patterns of coastal organisms differently, depending on the species’ ecologies and modes of dispersal. In the present study, genealogies of 3 estuarine crustaceans, each characterized by a different mode of passive dispersal and present in more than one biogeographic province, were reconstructed using mtDNA COI sequences, and the impacts of biogeographic boundaries on their phylogeographic patterns were compared. The species were (mode of dispersal in brackets): (1) the mudprawn Upogebia africana (planktonic larvae), (2) the isopod Exosphaeroma hylecoetes (adult rafting), and (3) the cumacean Iphinoe truncata (adult drifting). Two major mtDNA lineages with slightly overlapping distributions were identified in U. africana (the species with the highest dispersal potential). The other 2 species had 3 mtDNA lineages each, which were characterized by strict geographic segregation. Phylogeographic breaks in U. africana and E. hylecoetes coincided with biogeographic boundaries, whereas the phylogeographic patterns identified in I. truncata may reflect persistent palaeogeographic patterns. Ecological factors and modes of dispersal are likely to have played a role in both cladogenesis of the different lineages and in the establishment of their present-day distribution patterns.
- Full Text:
- Authors: Teske, Peter R , McQuaid, Christopher D , Froneman, P William , Barker, Nigel P
- Date: 2006
- Language: English
- Type: Article
- Identifier: vital:6548 , http://hdl.handle.net/10962/d1006004 , http://dx.doi.org/10.3354/meps314283
- Description: The South African coastline comprises 3 main biogeographic provinces: (1) the cool-temperate west coast, (2) the warm-temperate south coast, and (3) the subtropical east coast. The boundaries between these regions are defined by changes in species compositions and hydrological conditions. It is possible that these affect phylogeographic patterns of coastal organisms differently, depending on the species’ ecologies and modes of dispersal. In the present study, genealogies of 3 estuarine crustaceans, each characterized by a different mode of passive dispersal and present in more than one biogeographic province, were reconstructed using mtDNA COI sequences, and the impacts of biogeographic boundaries on their phylogeographic patterns were compared. The species were (mode of dispersal in brackets): (1) the mudprawn Upogebia africana (planktonic larvae), (2) the isopod Exosphaeroma hylecoetes (adult rafting), and (3) the cumacean Iphinoe truncata (adult drifting). Two major mtDNA lineages with slightly overlapping distributions were identified in U. africana (the species with the highest dispersal potential). The other 2 species had 3 mtDNA lineages each, which were characterized by strict geographic segregation. Phylogeographic breaks in U. africana and E. hylecoetes coincided with biogeographic boundaries, whereas the phylogeographic patterns identified in I. truncata may reflect persistent palaeogeographic patterns. Ecological factors and modes of dispersal are likely to have played a role in both cladogenesis of the different lineages and in the establishment of their present-day distribution patterns.
- Full Text:
Sand stress as a non-determinant of habitat segregation of indigenous (Perna perna) and invasive (Mytilus galloprovincialis) mussels in South Africa
- Zardi, Gerardo I, Nicastro, Katy R, Porri, Francesca, McQuaid, Christopher D
- Authors: Zardi, Gerardo I , Nicastro, Katy R , Porri, Francesca , McQuaid, Christopher D
- Date: 2006
- Language: English
- Type: Article
- Identifier: vital:6946 , http://hdl.handle.net/10962/d1011974
- Description: Periodical sand inundation influences diversity and distribution of intertidal species throughout the world. This study investigates the effect of sand stress on survival and on habitat segregation of the two dominant mussel species living in South Africa, the invasive Mytilus galloprovincialis and the indigenous Perna perna. P. perna occupies a lower intertidal zone which, monthly surveys over 1.5 years showed, is covered by sand for longer periods than the higher M. galloprovincialis zone. Despite this, when buried under sand, P. perna mortality rates were significantly higher than those of M. galloprovincialis in both laboratory and in field experiments. Under anoxic condition, P. perna mortality rates were still significantly higher than those for M. galloprovincialis, but both species died later than when exposed to sand burial, underlining the importance of the physical action of sand on mussel internal organs. When buried, both species accumulate sediments within the shell valves while still alive, but the quantities are much greater for P. perna. This suggests that P. perna gills are more severely damaged by sand abrasion and could explain its higher mortality rates. M. galloprovincialis has longer labial palps than P. perna, indicating a higher particle sorting ability and consequently explaining its lower mortality rates when exposed to sand in suspension. Habitat segregation is often explained by physiological tolerances, but in this case, such explanations fail. Although sand stress strongly affects the survival of the two species, it does not explain their vertical zonation. Contrary to our expectations, the species that is less well adapted to cope with sand stress maintains dominance in a habitat where such stress is high.
- Full Text:
- Authors: Zardi, Gerardo I , Nicastro, Katy R , Porri, Francesca , McQuaid, Christopher D
- Date: 2006
- Language: English
- Type: Article
- Identifier: vital:6946 , http://hdl.handle.net/10962/d1011974
- Description: Periodical sand inundation influences diversity and distribution of intertidal species throughout the world. This study investigates the effect of sand stress on survival and on habitat segregation of the two dominant mussel species living in South Africa, the invasive Mytilus galloprovincialis and the indigenous Perna perna. P. perna occupies a lower intertidal zone which, monthly surveys over 1.5 years showed, is covered by sand for longer periods than the higher M. galloprovincialis zone. Despite this, when buried under sand, P. perna mortality rates were significantly higher than those of M. galloprovincialis in both laboratory and in field experiments. Under anoxic condition, P. perna mortality rates were still significantly higher than those for M. galloprovincialis, but both species died later than when exposed to sand burial, underlining the importance of the physical action of sand on mussel internal organs. When buried, both species accumulate sediments within the shell valves while still alive, but the quantities are much greater for P. perna. This suggests that P. perna gills are more severely damaged by sand abrasion and could explain its higher mortality rates. M. galloprovincialis has longer labial palps than P. perna, indicating a higher particle sorting ability and consequently explaining its lower mortality rates when exposed to sand in suspension. Habitat segregation is often explained by physiological tolerances, but in this case, such explanations fail. Although sand stress strongly affects the survival of the two species, it does not explain their vertical zonation. Contrary to our expectations, the species that is less well adapted to cope with sand stress maintains dominance in a habitat where such stress is high.
- Full Text:
Spatio-temporal variability of larval abundance and settlement of Perna perna: differential delivery of mussels
- Porri, Francesca, McQuaid, Christopher D, Radloff, Sarah E
- Authors: Porri, Francesca , McQuaid, Christopher D , Radloff, Sarah E
- Date: 2006
- Language: English
- Type: text , Article
- Identifier: vital:6877 , http://hdl.handle.net/10962/d1011625 , http://dx.doi.org/10.3354/meps315141
- Description: We examined larval availability and settlement of the intertidal mussel Perna perna simultaneously at different spatial and temporal scales using a nested design at 2 sites, 3 km apart on the south coast of South Africa. Each site had 3 locations (300 m apart) where 5 artificial settler collectors were placed about 20 cm apart. Collectors were replaced on temporal scales varying from fortnightly (for 16 mo) to daily (2 series of 15 to 20 d). Each intertidal location was paired with an inshore location (these too were 300 m apart) within 500 m of the shore, where larval availability was measured by 3 vertical plankton hauls collected on the same dates as for settler sampling. There was strong temporal variation in abundances of larvae and settlers, and no correlation (r always < 0.14) was found between the two. Larvae were abundant only at the start of sampling and rare for the rest of the study, while distinct peaks in settler numbers occurred later. No spatial effect was detected for larval availability, while there was strong spatial variation in settlement at the location level. These results indicate that, on scales of 100s of m to km, delivery of larvae from the nearshore water column onto the shore is strongly differential, with some locations consistently receiving more settlers than others. We conclude that, at these sites, the patchiness in settlement observed on scales of 100s of m depends on differential delivery, rather than differential offshore distribution of larvae. We suggest that differential delivery is due to the effect of nearshore bottom topography on local hydrodynamics.
- Full Text:
- Authors: Porri, Francesca , McQuaid, Christopher D , Radloff, Sarah E
- Date: 2006
- Language: English
- Type: text , Article
- Identifier: vital:6877 , http://hdl.handle.net/10962/d1011625 , http://dx.doi.org/10.3354/meps315141
- Description: We examined larval availability and settlement of the intertidal mussel Perna perna simultaneously at different spatial and temporal scales using a nested design at 2 sites, 3 km apart on the south coast of South Africa. Each site had 3 locations (300 m apart) where 5 artificial settler collectors were placed about 20 cm apart. Collectors were replaced on temporal scales varying from fortnightly (for 16 mo) to daily (2 series of 15 to 20 d). Each intertidal location was paired with an inshore location (these too were 300 m apart) within 500 m of the shore, where larval availability was measured by 3 vertical plankton hauls collected on the same dates as for settler sampling. There was strong temporal variation in abundances of larvae and settlers, and no correlation (r always < 0.14) was found between the two. Larvae were abundant only at the start of sampling and rare for the rest of the study, while distinct peaks in settler numbers occurred later. No spatial effect was detected for larval availability, while there was strong spatial variation in settlement at the location level. These results indicate that, on scales of 100s of m to km, delivery of larvae from the nearshore water column onto the shore is strongly differential, with some locations consistently receiving more settlers than others. We conclude that, at these sites, the patchiness in settlement observed on scales of 100s of m depends on differential delivery, rather than differential offshore distribution of larvae. We suggest that differential delivery is due to the effect of nearshore bottom topography on local hydrodynamics.
- Full Text:
Temporal scales of variation in settlement and recruitment of the mussel Perna perna (Linnaeus, 1758)
- Porri, Francesca, McQuaid, Christopher D, Radloff, Sarah E
- Authors: Porri, Francesca , McQuaid, Christopher D , Radloff, Sarah E
- Date: 2006
- Language: English
- Type: Article
- Identifier: vital:6963 , http://hdl.handle.net/10962/d1012026 , http://dx.doi.org/10.1016/j.jembe.2005.11.008
- Description: Population dynamics of many intertidal organisms are strongly affected by the abundance and distribution of larvae arriving on the shore. In particular, not only absolute numbers of settlers but also the degree of synchronisation of settlement can have a strong influence on whether density-dependent or density-independent processes shape adult shape populations. Temporal variation in rates of settlement and recruitment of the mussel Perna perna on the south coast of South Africa was investigated using a nested spatial design at different temporal scales. Variability in settlement at spring tides was examined at two temporal scales: lunar (to investigate the effect of state of the moon on settlement) and tidal (to investigate the influence of state of the tide on mussel settlement). Recruitment over neap tides was examined at one temporal scale, fortnight (to investigate the effect of date on mussel recruitment). Strong temporal variation was evident for both settlement and recruitment, but not at all time scales. Distinct peaks of settler/recruit abundance were observed during the lunar and neap tide studies. Recruitment intensity differed over the course of the year, and pulsing of recruitment was generally synchronised among locations. However, the strength of pulsing differed dramatically among locations, giving a significant interaction between fortnight and location. The finest temporal scale, investigated in the tidal study, did not reveal a significant effect of the state of the tide on settlement. The state of the moon (new or full) was not significant as a main factor (p = 0.052), although generally more settlers arrived on the shore during new moon. Phase of the moon appeared to have an effect on settler abundances, but only when and where densities were high.
- Full Text:
- Authors: Porri, Francesca , McQuaid, Christopher D , Radloff, Sarah E
- Date: 2006
- Language: English
- Type: Article
- Identifier: vital:6963 , http://hdl.handle.net/10962/d1012026 , http://dx.doi.org/10.1016/j.jembe.2005.11.008
- Description: Population dynamics of many intertidal organisms are strongly affected by the abundance and distribution of larvae arriving on the shore. In particular, not only absolute numbers of settlers but also the degree of synchronisation of settlement can have a strong influence on whether density-dependent or density-independent processes shape adult shape populations. Temporal variation in rates of settlement and recruitment of the mussel Perna perna on the south coast of South Africa was investigated using a nested spatial design at different temporal scales. Variability in settlement at spring tides was examined at two temporal scales: lunar (to investigate the effect of state of the moon on settlement) and tidal (to investigate the influence of state of the tide on mussel settlement). Recruitment over neap tides was examined at one temporal scale, fortnight (to investigate the effect of date on mussel recruitment). Strong temporal variation was evident for both settlement and recruitment, but not at all time scales. Distinct peaks of settler/recruit abundance were observed during the lunar and neap tide studies. Recruitment intensity differed over the course of the year, and pulsing of recruitment was generally synchronised among locations. However, the strength of pulsing differed dramatically among locations, giving a significant interaction between fortnight and location. The finest temporal scale, investigated in the tidal study, did not reveal a significant effect of the state of the tide on settlement. The state of the moon (new or full) was not significant as a main factor (p = 0.052), although generally more settlers arrived on the shore during new moon. Phase of the moon appeared to have an effect on settler abundances, but only when and where densities were high.
- Full Text:
The relationship between human exploitation pressure and condition of mussel populations along the south coast of South Africa
- Rius, Marc, Kaehler, Sven, McQuaid, Christopher D
- Authors: Rius, Marc , Kaehler, Sven , McQuaid, Christopher D
- Date: 2006
- Language: English
- Type: Article
- Identifier: vital:6913 , http://hdl.handle.net/10962/d1011876
- Description: Human exploitation of intertidal organisms in South Africa is an ancient activity based principally on mussels. We studied mussel populations and patterns of exploitation along a 160-km stretch of the south coast. Photographs (100 per site) were taken of the intertidal rocks at each of 14 sites, covering a range of exploitation intensities. Percentage cover was negatively correlated with number of mussel patches and positively correlated with mean shell width. PCA analysis identified groups of sites: a) accessible and unprotected sites: low cover, small mussels, patchy distribution; b) inaccessible sites and sites next to, or within, nature reserves: high percentage cover, large animals, less patchy distributions. Affluent coastal settlements also seem to confer protection against harvesting. Harvester distribution was examined by aerial surveys and combined with information on distance to the nearest beach access point and number of households within 7 km for each site. Sites within reserves and inaccessible sites had low densities of collectors, whereas sites near urban areas and in the Ciskei had the highest densities. All correlations between indicators of human exploitation and condition of mussel populations were non-significant. However, number of collectors showed positive trends with number of patches and negative trends for the two other variables. The results indicate much lower levels of exploitation than in the neighouring Transkei region, and suggest a high degree of background variability in mussel population structure.
- Full Text:
- Authors: Rius, Marc , Kaehler, Sven , McQuaid, Christopher D
- Date: 2006
- Language: English
- Type: Article
- Identifier: vital:6913 , http://hdl.handle.net/10962/d1011876
- Description: Human exploitation of intertidal organisms in South Africa is an ancient activity based principally on mussels. We studied mussel populations and patterns of exploitation along a 160-km stretch of the south coast. Photographs (100 per site) were taken of the intertidal rocks at each of 14 sites, covering a range of exploitation intensities. Percentage cover was negatively correlated with number of mussel patches and positively correlated with mean shell width. PCA analysis identified groups of sites: a) accessible and unprotected sites: low cover, small mussels, patchy distribution; b) inaccessible sites and sites next to, or within, nature reserves: high percentage cover, large animals, less patchy distributions. Affluent coastal settlements also seem to confer protection against harvesting. Harvester distribution was examined by aerial surveys and combined with information on distance to the nearest beach access point and number of households within 7 km for each site. Sites within reserves and inaccessible sites had low densities of collectors, whereas sites near urban areas and in the Ciskei had the highest densities. All correlations between indicators of human exploitation and condition of mussel populations were non-significant. However, number of collectors showed positive trends with number of patches and negative trends for the two other variables. The results indicate much lower levels of exploitation than in the neighouring Transkei region, and suggest a high degree of background variability in mussel population structure.
- Full Text:
Will the invasive mussel Mytilus galloprovincialis Lamarck replace the indigenous Perna perna L. on the south coast of South Africa?
- Bownes, Sarah J, McQuaid, Christopher D
- Authors: Bownes, Sarah J , McQuaid, Christopher D
- Date: 2006
- Language: English
- Type: Article
- Identifier: vital:6926 , http://hdl.handle.net/10962/d1011914
- Description: The mussel Mytilus galloprovincialis is invasive worldwide, has displaced indigenous species on the west coast of South Africa and now threatens Perna perna on the south coast. We tested the hypothesis that Mytilus will replace Perna by examining changes in their distribution on shores where they co-exist. Total cover, adult density, recruit density, recruit/adult correlations and mean maximum lengths of both species were measured in 2001 at two contrasting sites (Plettenberg Bay and Tsitsikamma) 70 km apart, each including two locations 100 m apart. Cover and density were measured again in 2004. Total mussel abundance was significantly lower in Tsitsikamma, and recruit density was only 17% that of Plettenberg Bay. Abundance and cover increased upshore for Mytilus, but decreased for Perna, giving Mytilus higher adult and recruit density and total cover than Perna in the upper zones. Low shore densities of recruits and adults were similar between species but cover was lower for Mytilus, reflecting its smaller size, and presumably slower growth or higher mortality there. Thus, mechanisms excluding species differed among zones. Recruitment limitation delays invasion at Tsitsikamma and excludes Perna from the high shore, while Mytilus is excluded from the low shore by post-recruitment effects. Recruitment limitation also shapes population structure. Recruit/adult correlations were significant only where adult densities were low, and this effect was species-specific. Thus, at low densities, larvae settle or survive better near adult conspecifics. After 3 years, these patterns remained strongly evident, suggesting Mytilus will not eliminate Perna and that co-existence is possible through partial habitat segregation driven by recruitment limitation of Perna on the high shore and post-settlement effects on Mytilus on the low shore.
- Full Text:
- Authors: Bownes, Sarah J , McQuaid, Christopher D
- Date: 2006
- Language: English
- Type: Article
- Identifier: vital:6926 , http://hdl.handle.net/10962/d1011914
- Description: The mussel Mytilus galloprovincialis is invasive worldwide, has displaced indigenous species on the west coast of South Africa and now threatens Perna perna on the south coast. We tested the hypothesis that Mytilus will replace Perna by examining changes in their distribution on shores where they co-exist. Total cover, adult density, recruit density, recruit/adult correlations and mean maximum lengths of both species were measured in 2001 at two contrasting sites (Plettenberg Bay and Tsitsikamma) 70 km apart, each including two locations 100 m apart. Cover and density were measured again in 2004. Total mussel abundance was significantly lower in Tsitsikamma, and recruit density was only 17% that of Plettenberg Bay. Abundance and cover increased upshore for Mytilus, but decreased for Perna, giving Mytilus higher adult and recruit density and total cover than Perna in the upper zones. Low shore densities of recruits and adults were similar between species but cover was lower for Mytilus, reflecting its smaller size, and presumably slower growth or higher mortality there. Thus, mechanisms excluding species differed among zones. Recruitment limitation delays invasion at Tsitsikamma and excludes Perna from the high shore, while Mytilus is excluded from the low shore by post-recruitment effects. Recruitment limitation also shapes population structure. Recruit/adult correlations were significant only where adult densities were low, and this effect was species-specific. Thus, at low densities, larvae settle or survive better near adult conspecifics. After 3 years, these patterns remained strongly evident, suggesting Mytilus will not eliminate Perna and that co-existence is possible through partial habitat segregation driven by recruitment limitation of Perna on the high shore and post-settlement effects on Mytilus on the low shore.
- Full Text:
- «
- ‹
- 1
- ›
- »