- Title
- Photodynamic anticancer and antimicrobial activities of aza-BODIPY and porphyrinbased photosensitisers and their non-linear properties
- Creator
- Molupe, Nthabeleng Regina
- ThesisAdvisor
- Mack, J.
- ThesisAdvisor
- Nyokong, T.
- Subject
- Uncatalogued
- Date
- 2024-10-11
- Type
- Academic theses
- Type
- Doctoral theses
- Type
- text
- Identifier
- http://hdl.handle.net/10962/466603
- Identifier
- vital:76758
- Identifier
- DOI https://doi.org/10.21504/10962/466603
- Description
- New aza-BODIPY dyes and porphyrins were synthesised and characterised so that photodynamic therapy (PDT) and photodynamic antimicrobial chemotherapy (PACT) activity studies could be performed. Several strategies were explored to achieve targeted nanoplatforms or biocompatible nanoplatforms to enhance the suitability of these compounds for use in PDT. Following earlier MSc research on the encapsulation of halogenated boron dipyrromethene (BODIPY) dyes into Pluronic® micelles, similar nanomicelles were prepared to encapsulate halogenated boron aza-dipyrromethene (aza-BODPY) dyes to enhance their aqueous solubility. However, the 1,7-dimethylthiophenyl- 2,6-diiodo-3,5-diphenyl (1) and 1,7-di-methylthiophenyl-2,6-diiodo- 3,5-dithien-3-yl (2) aza-BODIPY dyes that were prepared in this context were found to degrade when encapsulated. A different strategy was then followed in which gold nanoparticles (AuNPs) were conjugated to 1 and 2 via Au-S interactions to form biocompatible aza-BODIPY-AuNP conjugates (1-AuNP and 2-AuNP). This strategy was successful, and favourable IC50 values of 3.60 and 10.0 μM for 1-AuNP and 2- AuNP were obtained during in vitro PDT activity studies against MCF-7 human breast cancer cells, respectively, while values of 11.0 and 12.8 μM were obtained for 1 and 2. To further explore the preparation of better-targeted aza-BODIPY photosensitiser dyes, folic acid (FA) was conjugated to 1,7-dihydroxyphenyl-2,6-diiodo-3,5-di-4- bromophenyl (3) and 1,7-di-4-bromo-2,6-diiodo-3,5-dihydroxyphenylphenyl (4) aza- BODIPYs via ester bonds. Not only was the conjugation to form 3-FA and 4-FA successful, but the conjugated dyes are water-soluble, which is advantageous for drug transport in the context of PDT. These conjugates were applied in vitro against MCF-7 cancer cells and were found to have relatively high activities with IC50 values of 0.91 and 7.48 μM for 3-FA and 4-FA, respectively, while values of 11.3 and 13.0 μM were obtained for the non-conjugated 3 and 4 dyes. In a similar manner, tin (IV) and indium (III) tetrapyridylporphyrins (5 and 6) were axially conjugated to folic acid via ester bonds (5-FA and 6-FA). The conjugation was successful and enhanced the PDT activities of the dyes MCF-7 cancer cells in vitro from 48.2 to 29.6 μM for 5 and 5-FA, and from 43.9 to 13.3 μM for 6 and 6-FA. Relatively high dark toxicity was observed for 6-FA of 26.1 μM. When the nitrogen atoms of the meso-pyridyl rings were quaternized (5-FAQ and 6-FAQ) to further enhance the aqueous solubility of the complexes, it was not possible to calculate an IC50 value. When octanol-water partition coefficients (Log P) were calculated by the shake flask method, values of −0.70 and −1.70 were obtained for 5-FAQ and 6-FAQ, respectively. This provides evidence that the dyes are too water-soluble and not sufficiently lipophilic. The PACT activity properties of the synthesised diiodinated aza-BODIPYs were studied against Staphylococcus aureus (S. aureus) through photoirradiation for 60 min with Thorlabs M660L4 (280 mW.cm−2) and M730L4 (160 mW.cm−2) light emitting diodes (LEDs) mounted on the illumination chamber of Modulight® 7710-680 medical laser system providing doses at the well-plate of 100 and 57 J.cm−2.min−1. Aza- BODIPYs 2, 3 and 4 all inhibited the growth of S. aureus but with relatively low Log10 reductions of 1.37, 1.20 and 0.20. In contrast, aza-BODIPY 1 was found to have a Log10 reduction of 7.82. The PACT activities of free base and Sn(IV) 5-[4-(3- bromoethylcarboxyamidyl)phenyl]-10,15,20-triphenylporphyrins (7 and 8) prepared by Dr Balaji Babu (New Journal of Chemistry 2022, 46, 5288-5295) were tested against S. aureus to determine whether adding a triphenylphosphonium moiety to form free base and Sn(IV) 5-[4-(triphenylphosphonium)ethylcarboxyamidyl)phenyl]-10,15,20- triphenylporphyrin (18 and 19) enhances the photo-induced antibacterial activity, in addition to optimising the PDT properties due to its mitochondria-targeting properties. The PACT activities obtained against S. aureus were not favourable, but 18 exhibited enhanced activity across the studied concentration range. The potential utility of aza-BODIPY dyes 1-4 and their non-iodinated analogues (1a- 4a) for optical limiting applications was analysed by carrying out a series of Z-scan measurements, since dyes of this type have large ground state dipole moments, and this can enhance the non-linear optical limiting response. All the aza-BODIPY dyes under investigation exhibited intense non-linear absorption (NLA) behaviour with Zscan profiles that contain significant reverse saturable absorption (RSA) responses. Aza-BODIPYs 1, 2a, 2, 3, 4a, and 4 decreased the transmitted intensity of the strong laser beam to less than 50% of the linear response in organic solutions with a fixed absorbance of 1.8 for the main aza-BODIPY spectral band and a laser pulse input energy of 42 μJ. Higher second-order hyperpolarizability (γ) values were obtained for iodinated dyes 1, 2, 3 and 4. The highest value of 3.15×10−29 esu was obtained for 1. A comparative study involving the four non-iodinated dyes 1, 2, 3 and 4 and seven 1,3,5,7-tetraaryl aza-BODIPY dyes reported previously in the PhD thesis of Gugu Kubheka at Rhodes University demonstrated that there was no clear trend correlation between the γ values calculated from the Z-scan measurements and calculated dipole moments.
- Description
- Thesis (PhD) -- Faculty of Science, Chemistry, 2024
- Format
- computer, online resource, application/pdf, 1 online resource (272 pages), pdf
- Publisher
- Rhodes University, Faculty of Science, Chemistry
- Language
- English
- Rights
- Molupe, Nthabeleng Regina
- Rights
- Use of this resource is governed by the terms and conditions of the Creative Commons "Attribution-NonCommercial-ShareAlike" License (http://creativecommons.org/licenses/by-nc-sa/2.0/)
- Hits: 59
- Visitors: 60
- Downloads: 6
Thumbnail | File | Description | Size | Format | |||
---|---|---|---|---|---|---|---|
View Details | SOURCE1 | MOLUPE-PHD-TR24-275.pdf | 3 MB | Adobe Acrobat PDF | View Details |