Unveiling the reactivity of truxillic and truxinic acids (TXAs): deprotonation, anion center dot center dot center dot HO, cation center dot center dot center dot O and cation center dot center dot center dot pi interactions in TXA (0) center dot center dot center dot Y+ and TXA (0) center dot center dot center dot Z (-) complexes (Y= Li, Na, K; Z= F, Cl, Br)
- Authors: Isamura, Bienfait K , Patouossa, Issofa , Muya, Jules T , Lobb, Kevin A
- Date: 2023
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/452827 , vital:75173 , xlink:href="https://link.springer.com/content/pdf/10.1007/s11224-022-01965-5.pdf"
- Description: Herein, we report a quantum chemistry investigation of the interaction between µ-truxinic acid, referred to as TXA0 , and Y+ (Y=Li, Na, K) and Z− (Z=F, Cl, Br) ions using M06-2X, B3LYP and 휔 B97XD functionals in conjunction with the 6–31+ +G(d,p), aug-cc-pVDZ(-X2C) and 6–311+ +G (d, p) basis sets. Our computations suggest that Y+ cations can bind to TXA0 through several combinations of cation…O and cation-π interactions, while Z− anions generally establish anion… H–O contacts. Predicted binding energies at the M06-2X/6–311+ +G(d,p) level range between−26.6 and−70.2 kcal/mol for cationic complexes and−20.4 and−62.3 kcal/mol for anionic ones. As such, TXA0 appears as an amphoteric molecule with a slight preference for electrophilic (cation... O) attacks. Furthermore, the most favourable binding site for cations allows for the formation of O…cation…O interactions where the cation is trapped between O37 and O38 atoms of TXA0 . Anions do not behave uniformly towards TXA0 : while the fuoride anion F− induces the deprotonation of TXA0 , Br− and Cl− do not. All of these structural insights are supported by topological calculations in the context of the quantum theory of atoms in molecules (QTAIM). Finally, SAPT0 analyses suggest that TXA0 …Y+ and TXA0 …Z− complexes are mainly stabilized by electrostatic and inductive efects, whose combined contributions account for more than 60 percent of the total interaction energy.
- Full Text:
- Date Issued: 2023
Regioselectivity, chemical bonding and physical nature of the interaction between imidazole and XAHs (X= H, F, Cl, Br, CH3, and A= S, Se, Te)
- Authors: Isamura, Bienfait K , Lobb, Kevin A , Muya, Jules T
- Date: 2022
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/453183 , vital:75229 , xlink:href="https://doi.org/10.1080/00268976.2022.2026511"
- Description: Theambidentreactivityofsmall-sizedXAHs(X=H,F,Cl,Br,CH3,andA=S,Se,Te)moleculestowardsthe imidazole molecule (IMZ) has been investigated using wave function (MP2) and Density Func-tional Theory (B3LYP, B3LYP-D3). Molecular electrostatic potentials (MEPs) and frontier molecularorbitals of monomers are computed to rationalise the regioselectivity of IMZ towards XAHs. Thechemical bonding of each complex is described in the framework of the quantum theory of atomsin molecules (QTAIM) and natural bond orbital (NBO) paradigms. The symmetry-adapted pertur-bation theory (SAPT) is employed to assess the physical nature of the interactions. Our findingssuggest that XAHs mainly bind to IMZ through H-bonding and chalcogen-bonding interactionsof weak to moderate strength, with binding energies ranging from−3.1 to−17.6 kcal/mol at theMP2/aug-cc-pVDZ(-PP) level. Topological QTAIM descriptors reveal all H-bonds between IMZ andXAHs to be purely noncovalent contacts, while chalcogen bonds of halogenated XAHs (X=F, Cl, Br) show a partial covalent character. SAPT2 calculations indicate that both H-bonded and chalcogen-bonded complexes are mainly stabilised by electrostatic interactions. Insights drawn from this studyare expected to constitute the bedrock for further investigations about noncovalent interactionbetween middle to big-sized chalcogen-containing molecules and imidazole derivatives.
- Full Text:
- Date Issued: 2022