Ultrasensitive detection of prostate-specific antigen using glucose-encapsulated nanoliposomes anti-PSA polyclonal antibody as detection nanobioprobes
- Mwanza, Daniel, Mfamela, Nololo, Adeniyi, Omotayo, Nyokong, Tebello, Mashazi, Philani N
- Authors: Mwanza, Daniel , Mfamela, Nololo , Adeniyi, Omotayo , Nyokong, Tebello , Mashazi, Philani N
- Date: 2022
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/300268 , vital:57911 , xlink:href="https://doi.org/10.1016/j.talanta.2022.123483"
- Description: In this work, the preparation of glucose encapsulating nanoliposomes was achieved using two different lipid formulations, labelled as F1 and F2. Both formulations contained phosphatidylcholine (PC), oleylamido-4-butanoic acid (OABA) and in addition, F1 had cholesterol (CHO) while F2 contained cholesteroyl hemisussinate (CHEMS). These formulations were studied for their pH sensitivity and controlled release of encapsulated glucose for indirect detection of prostate-specific antigen (PSA) using sandwich immunoassay. As a signal generator, encapsulated glucose in nanoliposomes was quantified directly using the personal glucose meter (PGM) and colorimetrically using peroxidase property of horseradish peroxidase (HRP) enzyme and Pd|PdO as nanozymes. Controlled release of the encapsulated glucose was achieved using the pH effect or Triton-X 100 as a surfactant to destabilize the liposomal structure. The F2 formulation showed maximum controlled release at acidic phosphate buffer saline (PBS, pH 5.0). The concentration of encapsulated glucose was found to be high in F2 formulation and these were applied for the indirect detection of PSA. The limit of detection (LOD) values for PSA were found to be 53 fg mL−1, 64 fg mL−1 and 10 fg mL−1 when HRP, Pd|PdO and PGM were respectively used. The detection signal was linear over a wide concentration range for PSA including the clinical range of 4–10 ng mL−1. The HRP system showed low LOD value when compared with Pd|PdO nanozymes. PGM system gave lowest LOD values owing to the sensitivity of the system towards glucose. Pd|PdO nanozyme system showed good stability over a wide temperature up to 80 °C. PGM system required less reaction time (2 min), low reagents and results were readily generated in digital format.
- Full Text:
- Authors: Mwanza, Daniel , Mfamela, Nololo , Adeniyi, Omotayo , Nyokong, Tebello , Mashazi, Philani N
- Date: 2022
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/300268 , vital:57911 , xlink:href="https://doi.org/10.1016/j.talanta.2022.123483"
- Description: In this work, the preparation of glucose encapsulating nanoliposomes was achieved using two different lipid formulations, labelled as F1 and F2. Both formulations contained phosphatidylcholine (PC), oleylamido-4-butanoic acid (OABA) and in addition, F1 had cholesterol (CHO) while F2 contained cholesteroyl hemisussinate (CHEMS). These formulations were studied for their pH sensitivity and controlled release of encapsulated glucose for indirect detection of prostate-specific antigen (PSA) using sandwich immunoassay. As a signal generator, encapsulated glucose in nanoliposomes was quantified directly using the personal glucose meter (PGM) and colorimetrically using peroxidase property of horseradish peroxidase (HRP) enzyme and Pd|PdO as nanozymes. Controlled release of the encapsulated glucose was achieved using the pH effect or Triton-X 100 as a surfactant to destabilize the liposomal structure. The F2 formulation showed maximum controlled release at acidic phosphate buffer saline (PBS, pH 5.0). The concentration of encapsulated glucose was found to be high in F2 formulation and these were applied for the indirect detection of PSA. The limit of detection (LOD) values for PSA were found to be 53 fg mL−1, 64 fg mL−1 and 10 fg mL−1 when HRP, Pd|PdO and PGM were respectively used. The detection signal was linear over a wide concentration range for PSA including the clinical range of 4–10 ng mL−1. The HRP system showed low LOD value when compared with Pd|PdO nanozymes. PGM system gave lowest LOD values owing to the sensitivity of the system towards glucose. Pd|PdO nanozyme system showed good stability over a wide temperature up to 80 °C. PGM system required less reaction time (2 min), low reagents and results were readily generated in digital format.
- Full Text:
Electrografting of isophthalic acid monolayer and covalent attachment of antibody onto carbon surfaces
- Mwanza, Daniel, Phal, Sereilakhena, Nyokong, Tebello, Tesfalidet, Solomon, Mashazi, Philani N
- Authors: Mwanza, Daniel , Phal, Sereilakhena , Nyokong, Tebello , Tesfalidet, Solomon , Mashazi, Philani N
- Date: 2021
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/231345 , vital:49879 , xlink:href="https://doi.org/10.1016/j.electacta.2021.139360"
- Description: In this study, a 5-diazonium isophthalic acid was synthesized and electrografted onto glassy carbon (GCE) and screen-printed carbon (SPCE) electrodes. SPCE was used to demonstrate fabrication of a miniature device and to compare with conventional glassy carbon electrodes. The isophthalic acid (IPA) electrografted thin film was used for the immobilization of anti-methotrexate antibody (Ab) using carbodiimide activation chemistry to form antibody modified surfaces, GCE-IPA-Ab and SPCE-IPA-Ab. The GCE -IPA-Ab and SPCE-IPA-Ab surfaces were used as capacitive biosensors for the detection of methotrexate (MTX) in phosphate buffer (pH 7.4) using capacitive electrochemical impedance spectroscopy (EIS). The EIS data was analyzed using singular value decomposition (SVD). Principal component regression analysis gave R2 values of 0.99 for both the GCE-IPA-Ab and SPCE-IPA-Ab surfaces. The detection limit from the calibration curve of the GCE-IPA-Ab and SPCE-IPA-Ab was calculated to be 7.0 pmol.L−1 and 5.5 pmol.L−1, respectively.
- Full Text:
- Authors: Mwanza, Daniel , Phal, Sereilakhena , Nyokong, Tebello , Tesfalidet, Solomon , Mashazi, Philani N
- Date: 2021
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/231345 , vital:49879 , xlink:href="https://doi.org/10.1016/j.electacta.2021.139360"
- Description: In this study, a 5-diazonium isophthalic acid was synthesized and electrografted onto glassy carbon (GCE) and screen-printed carbon (SPCE) electrodes. SPCE was used to demonstrate fabrication of a miniature device and to compare with conventional glassy carbon electrodes. The isophthalic acid (IPA) electrografted thin film was used for the immobilization of anti-methotrexate antibody (Ab) using carbodiimide activation chemistry to form antibody modified surfaces, GCE-IPA-Ab and SPCE-IPA-Ab. The GCE -IPA-Ab and SPCE-IPA-Ab surfaces were used as capacitive biosensors for the detection of methotrexate (MTX) in phosphate buffer (pH 7.4) using capacitive electrochemical impedance spectroscopy (EIS). The EIS data was analyzed using singular value decomposition (SVD). Principal component regression analysis gave R2 values of 0.99 for both the GCE-IPA-Ab and SPCE-IPA-Ab surfaces. The detection limit from the calibration curve of the GCE-IPA-Ab and SPCE-IPA-Ab was calculated to be 7.0 pmol.L−1 and 5.5 pmol.L−1, respectively.
- Full Text:
Nanohybrid electrocatalyst based on cobalt phthalocyanine-carbon nanotube-reduced graphene oxide for ultrasensitive detection of glucose in human saliva
- Adeniyi, Omotayo, Nwahara, Nnamdi, Mwanza, Daniel, Nyokong, Tebello, Mashazi, Philani N
- Authors: Adeniyi, Omotayo , Nwahara, Nnamdi , Mwanza, Daniel , Nyokong, Tebello , Mashazi, Philani N
- Date: 2021
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/231356 , vital:49880 , xlink:href="https://doi.org/10.1016/j.snb.2021.130723"
- Description: The current diabetes management systems require collecting blood samples via an invasive and painful finger pricking leading to the formation of callus, scarring and loss of sensibility to patients due to continuous monitoring. Therefore, a non-invasive and painless method of determining glucose levels would be desirable to diabetes patients who need constant monitoring. Saliva glucose measurement is a non-invasive alternative for diabetes management. A highly sensitive, stable, and selective non-enzymatic electrochemical sensor that can accurately quantify saliva glucose is required. A single-walled carbon nanotube/reduced graphene oxide/cobalt phthalocyanines nanohybrid modified glassy carbon electrode (GCE-SWCNT/rGO/CoPc) has been fabricated for the non-enzymatic determination of glucose in human saliva. The SWCNT/rGO/CoPc was characterized using various spectroscopic, microscopic, and electrochemical techniques. The synergistic effect between SWCNT, rGO, and CoPc facilitated excellent electron transfer process that improved the sensor sensitivity. The GCE-SWCNT/rGO/CoPc sensor exhibited two linear responses in the 0.30 μM to 0.50 mM and 0.50–5.0 mM glucose concentration ranges, and the detection limit was 0.12 μM. The sensor had an excellent saliva glucose detection sensitivity of 992.4 μA·mM−1·cm−2 and high specificity for glucose in the presence of other coexisting analytes. In addition, it showed good storage stability, reusability, and a fast response time of about 1.2 s. The GCE-SWCNT/rGO/CoPc nanohybrid electrode showed excellent potential for developing accurate, non-invasive, and painless glucose sensing.
- Full Text:
- Authors: Adeniyi, Omotayo , Nwahara, Nnamdi , Mwanza, Daniel , Nyokong, Tebello , Mashazi, Philani N
- Date: 2021
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/231356 , vital:49880 , xlink:href="https://doi.org/10.1016/j.snb.2021.130723"
- Description: The current diabetes management systems require collecting blood samples via an invasive and painful finger pricking leading to the formation of callus, scarring and loss of sensibility to patients due to continuous monitoring. Therefore, a non-invasive and painless method of determining glucose levels would be desirable to diabetes patients who need constant monitoring. Saliva glucose measurement is a non-invasive alternative for diabetes management. A highly sensitive, stable, and selective non-enzymatic electrochemical sensor that can accurately quantify saliva glucose is required. A single-walled carbon nanotube/reduced graphene oxide/cobalt phthalocyanines nanohybrid modified glassy carbon electrode (GCE-SWCNT/rGO/CoPc) has been fabricated for the non-enzymatic determination of glucose in human saliva. The SWCNT/rGO/CoPc was characterized using various spectroscopic, microscopic, and electrochemical techniques. The synergistic effect between SWCNT, rGO, and CoPc facilitated excellent electron transfer process that improved the sensor sensitivity. The GCE-SWCNT/rGO/CoPc sensor exhibited two linear responses in the 0.30 μM to 0.50 mM and 0.50–5.0 mM glucose concentration ranges, and the detection limit was 0.12 μM. The sensor had an excellent saliva glucose detection sensitivity of 992.4 μA·mM−1·cm−2 and high specificity for glucose in the presence of other coexisting analytes. In addition, it showed good storage stability, reusability, and a fast response time of about 1.2 s. The GCE-SWCNT/rGO/CoPc nanohybrid electrode showed excellent potential for developing accurate, non-invasive, and painless glucose sensing.
- Full Text:
The effect of the cobalt and manganese central metal ions on the nonlinear optical properties of tetra (4-propargyloxyphenoxy) phthalocyanines
- Mwanza, Daniel, Louzada, Marcel, Britton, Jonathan, Sekhosana, Kutloano E, Khene, Samson M, Nyokong, Tebello, Mashazi, Philani N
- Authors: Mwanza, Daniel , Louzada, Marcel , Britton, Jonathan , Sekhosana, Kutloano E , Khene, Samson M , Nyokong, Tebello , Mashazi, Philani N
- Date: 2018
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/233357 , vital:50083 , xlink:href="https://doi.org/10.1039/C8NJ00748A"
- Description: The metal-free (H2TPrOPhOPc), cobalt (CoTPrOPhOPc) and manganese (Mn(OAc)TPrOPhOPc) tetra propargyloxyphenoxy phthalocyanines were evaluated for their potential as optical limiting materials. The effect of the substituents and the central metal ions on the nonlinear optical properties was evaluated. The metal-free phthalocyanine exhibited better nonlinear optical properties when compared to the cobalt and manganese complexes owing to the metal ions quenching the excited state due to their half-filled d-orbitals. The nonlinear absorption coefficient (βeff, ×10−5 m MW−1) followed the trend of H2TPrOPhOPc > CoTPrOPhOPc > Mn(OAc)TPrOPhOPc. The values βeff (×10−5 m MW−1) using 532 nm Nd:YAG (560 nm monochromatic Ekspla) laser sources were 23.5 > 14.3 > 9.20 (14.4). The second-order nonlinear coefficient obtained using density functional theory calculations, the theoretical hyper-Rayleigh scattering (βHRS, ×10−28 esu), showed the decreasing trend for H2TPrOPhOPc (2.28) > CoTPrOPhOPc (2.10) > Mn(OAc)TPrOPhOPc (1.86). The 4-(propargyloxy)phenoxy substituents enhanced the optical limiting properties of the synthesized phthalocyanines.
- Full Text:
- Authors: Mwanza, Daniel , Louzada, Marcel , Britton, Jonathan , Sekhosana, Kutloano E , Khene, Samson M , Nyokong, Tebello , Mashazi, Philani N
- Date: 2018
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/233357 , vital:50083 , xlink:href="https://doi.org/10.1039/C8NJ00748A"
- Description: The metal-free (H2TPrOPhOPc), cobalt (CoTPrOPhOPc) and manganese (Mn(OAc)TPrOPhOPc) tetra propargyloxyphenoxy phthalocyanines were evaluated for their potential as optical limiting materials. The effect of the substituents and the central metal ions on the nonlinear optical properties was evaluated. The metal-free phthalocyanine exhibited better nonlinear optical properties when compared to the cobalt and manganese complexes owing to the metal ions quenching the excited state due to their half-filled d-orbitals. The nonlinear absorption coefficient (βeff, ×10−5 m MW−1) followed the trend of H2TPrOPhOPc > CoTPrOPhOPc > Mn(OAc)TPrOPhOPc. The values βeff (×10−5 m MW−1) using 532 nm Nd:YAG (560 nm monochromatic Ekspla) laser sources were 23.5 > 14.3 > 9.20 (14.4). The second-order nonlinear coefficient obtained using density functional theory calculations, the theoretical hyper-Rayleigh scattering (βHRS, ×10−28 esu), showed the decreasing trend for H2TPrOPhOPc (2.28) > CoTPrOPhOPc (2.10) > Mn(OAc)TPrOPhOPc (1.86). The 4-(propargyloxy)phenoxy substituents enhanced the optical limiting properties of the synthesized phthalocyanines.
- Full Text:
Exploiting Click Chemistry for the Covalent Immobilization of Tetra (4-Propargyloxyphenoxy) Metallophthalocyanines onto Phenylazide-Grafted Gold Surfaces
- Mwanza, Daniel, Mvango, Sindisiwe, Khene, Samson M, Nyokong, Tebello, Mashazi, Philani N
- Authors: Mwanza, Daniel , Mvango, Sindisiwe , Khene, Samson M , Nyokong, Tebello , Mashazi, Philani N
- Date: 2017
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/189177 , vital:44824 , xlink:href="https://doi.org/10.1016/j.electacta.2017.09.115"
- Description: In this study, tetra-(4-propargyloxy)phenoxy phthalocyanines (MTPrOPhOPc) were covalently immobilized as thin films onto gold surfaces via click reaction. The gold electrode surfaces were pre-functionalized with phenylazide (Au-PAz) thin film using in-situ diazonium generation followed by electrografting. Copper (I) catalyzed alkynyl-azide cycloaddition (CuCAAC) reaction was used to covalently immobilize the MTPrOPhOPcs onto the gold electrode surfaces to form Au-PAz-MTPrOPhOPc. The MTPrOPhOPcs were further studied for their electrocatalytic and electroanalytical properties towards the detection of hydrogen peroxide. Au-PAz-MTPrOPhOPc exhibited good reproducibility and stability in various electrolyte conditions. Electrochemical and spectroscopic surface characterization of the functionalized gold electrode surfaces confirmed the presence of the phenylazide and MTPrOPhOPc thin monolayer films. The excellent electroanalysis of hydrogen peroxide with the limit of detection (LoD) and limit of quantification (LoQ) in the μM range was obtained. The electrocatalytic reduction peaks for H2O2 were observed at −0.37 V for Au-PAz-Mn(OAc)TPrOPhOPc and −0.31 V for Au-PAz-CoTPrOPhOPc when Ag|AgCl pseudo-reference electrode was used. The Au-PAz-Mn(OAc)TPrOPhOPc and Au-PAz-CoTPrOPhOPc gold electrode surfaces showed good sensitivity and reproducibility towards the electrocatalytic reduction of hydrogen peroxide in pH 7.4 phosphate buffer solution.
- Full Text:
- Authors: Mwanza, Daniel , Mvango, Sindisiwe , Khene, Samson M , Nyokong, Tebello , Mashazi, Philani N
- Date: 2017
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/189177 , vital:44824 , xlink:href="https://doi.org/10.1016/j.electacta.2017.09.115"
- Description: In this study, tetra-(4-propargyloxy)phenoxy phthalocyanines (MTPrOPhOPc) were covalently immobilized as thin films onto gold surfaces via click reaction. The gold electrode surfaces were pre-functionalized with phenylazide (Au-PAz) thin film using in-situ diazonium generation followed by electrografting. Copper (I) catalyzed alkynyl-azide cycloaddition (CuCAAC) reaction was used to covalently immobilize the MTPrOPhOPcs onto the gold electrode surfaces to form Au-PAz-MTPrOPhOPc. The MTPrOPhOPcs were further studied for their electrocatalytic and electroanalytical properties towards the detection of hydrogen peroxide. Au-PAz-MTPrOPhOPc exhibited good reproducibility and stability in various electrolyte conditions. Electrochemical and spectroscopic surface characterization of the functionalized gold electrode surfaces confirmed the presence of the phenylazide and MTPrOPhOPc thin monolayer films. The excellent electroanalysis of hydrogen peroxide with the limit of detection (LoD) and limit of quantification (LoQ) in the μM range was obtained. The electrocatalytic reduction peaks for H2O2 were observed at −0.37 V for Au-PAz-Mn(OAc)TPrOPhOPc and −0.31 V for Au-PAz-CoTPrOPhOPc when Ag|AgCl pseudo-reference electrode was used. The Au-PAz-Mn(OAc)TPrOPhOPc and Au-PAz-CoTPrOPhOPc gold electrode surfaces showed good sensitivity and reproducibility towards the electrocatalytic reduction of hydrogen peroxide in pH 7.4 phosphate buffer solution.
- Full Text:
- «
- ‹
- 1
- ›
- »