Unsymmetrically substituted nickel triazatetra-benzcorrole and phthalocynanine complexes
- Adegoke, Oluwasesan, Nyokong, Tebello
- Authors: Adegoke, Oluwasesan , Nyokong, Tebello
- Date: 2014
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/189818 , vital:44934 , xlink:href="https://doi.org/10.1007/s10895-013-1317-4"
- Description: We report on the design and application of fluorescent nanoprobes based on the covalent linking of L-glutathione-capped CdSe@ZnS quantum dots (QDs) to newly synthesized unsymmetrically substituted nickel mercaptosuccinic acid triazatetra-benzcorrole (3) and phthalocyanine (4) complexes. Fluorescence quenching of the QDs occurred on conjugation to complexes 3 or 4. The nanoprobes were selectively screened in the presence of different cations and Hg2+ showed excellent affinity in “turning ON” the fluorescence of the nanoprobes. Experimental results showed that the sensitivity of QDs-4 towards Hg2+ was much higher than that of QDs-3 nanoprobe. The mechanism of reaction has been elucidated based on the ability of Hg2+ to coordinate with the sulphur atom of the Ni complex ring and apparently “turn ON” the fluorescence of the linked QDs.
- Full Text:
- Date Issued: 2014
- Authors: Adegoke, Oluwasesan , Nyokong, Tebello
- Date: 2014
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/189818 , vital:44934 , xlink:href="https://doi.org/10.1007/s10895-013-1317-4"
- Description: We report on the design and application of fluorescent nanoprobes based on the covalent linking of L-glutathione-capped CdSe@ZnS quantum dots (QDs) to newly synthesized unsymmetrically substituted nickel mercaptosuccinic acid triazatetra-benzcorrole (3) and phthalocyanine (4) complexes. Fluorescence quenching of the QDs occurred on conjugation to complexes 3 or 4. The nanoprobes were selectively screened in the presence of different cations and Hg2+ showed excellent affinity in “turning ON” the fluorescence of the nanoprobes. Experimental results showed that the sensitivity of QDs-4 towards Hg2+ was much higher than that of QDs-3 nanoprobe. The mechanism of reaction has been elucidated based on the ability of Hg2+ to coordinate with the sulphur atom of the Ni complex ring and apparently “turn ON” the fluorescence of the linked QDs.
- Full Text:
- Date Issued: 2014