Allosteric modulation of conformational dynamics in human Hsp90α: a computational study
- Penkler, David L, Atilgan, Canan, Tastan Bishop, Özlem
- Authors: Penkler, David L , Atilgan, Canan , Tastan Bishop, Özlem
- Date: 2017
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/68531 , vital:29276 , http://dx.doi.org/10.1101/198341
- Description: Central to Hsp90’s biological function is its ability to interconvert between various conformational states. Drug targeting of Hsp90’s regulatory mechanisms, including its modulation by co-chaperone association, presents as an attractive therapeutic strategy for Hsp90 associated pathologies. Here, we utilize homology modeling techniques to calculate full-length structures of human Hsp90α in closed and partially-open conformations. Atomistic simulations of these structures demonstrated that bound ATP stabilizes the dimer by ‘tensing’ each protomer, while ADP and apo configurations ‘relax’ the complex by increasing global flexibility. Dynamic residue network analysis revealed regions of the protein involved in intra-protein communication, and identified several overlapping key communication hubs that correlate with known functional sites. Perturbation response scanning analysis identified several potential residue sites capable of modulating conformational change in favour of interstate conversion. For the ATP-bound open conformation, these sites were found to overlap with known Aha1 and client binding sites, demonstrating how naturally occurring forces associated with co-factor binding could allosterically modulate conformational dynamics.
- Full Text:
- Date Issued: 2017
- Authors: Penkler, David L , Atilgan, Canan , Tastan Bishop, Özlem
- Date: 2017
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/68531 , vital:29276 , http://dx.doi.org/10.1101/198341
- Description: Central to Hsp90’s biological function is its ability to interconvert between various conformational states. Drug targeting of Hsp90’s regulatory mechanisms, including its modulation by co-chaperone association, presents as an attractive therapeutic strategy for Hsp90 associated pathologies. Here, we utilize homology modeling techniques to calculate full-length structures of human Hsp90α in closed and partially-open conformations. Atomistic simulations of these structures demonstrated that bound ATP stabilizes the dimer by ‘tensing’ each protomer, while ADP and apo configurations ‘relax’ the complex by increasing global flexibility. Dynamic residue network analysis revealed regions of the protein involved in intra-protein communication, and identified several overlapping key communication hubs that correlate with known functional sites. Perturbation response scanning analysis identified several potential residue sites capable of modulating conformational change in favour of interstate conversion. For the ATP-bound open conformation, these sites were found to overlap with known Aha1 and client binding sites, demonstrating how naturally occurring forces associated with co-factor binding could allosterically modulate conformational dynamics.
- Full Text:
- Date Issued: 2017
MD-TASK: a software suite for analyzing molecular dynamics trajectories
- Brown, David K, Penkler, David L, Amamuddy, Olivier S, Ross, Caroline J, Atilgan, Ali R, Atilgan, Canan, Tastan Bishop, Özlem
- Authors: Brown, David K , Penkler, David L , Amamuddy, Olivier S , Ross, Caroline J , Atilgan, Ali R , Atilgan, Canan , Tastan Bishop, Özlem
- Date: 2017
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/125138 , vital:35735 , https://doi.10.1093/bioinformatics/btx349
- Description: Molecular dynamics (MD) determines the physical motions of atoms of a biological macromolecule in a cell-like environment and is an important method in structural bioinformatics. Traditionally, measurements such as root mean square deviation, root mean square fluctuation, radius of gyration, and various energy measures have been used to analyze MD simulations. Here, we present MD-TASK, a novel software suite that employs graph theory techniques, perturbation response scanning, and dynamic cross-correlation to provide unique ways for analyzing MD trajectories.
- Full Text:
- Date Issued: 2017
- Authors: Brown, David K , Penkler, David L , Amamuddy, Olivier S , Ross, Caroline J , Atilgan, Ali R , Atilgan, Canan , Tastan Bishop, Özlem
- Date: 2017
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/125138 , vital:35735 , https://doi.10.1093/bioinformatics/btx349
- Description: Molecular dynamics (MD) determines the physical motions of atoms of a biological macromolecule in a cell-like environment and is an important method in structural bioinformatics. Traditionally, measurements such as root mean square deviation, root mean square fluctuation, radius of gyration, and various energy measures have been used to analyze MD simulations. Here, we present MD-TASK, a novel software suite that employs graph theory techniques, perturbation response scanning, and dynamic cross-correlation to provide unique ways for analyzing MD trajectories.
- Full Text:
- Date Issued: 2017
Perturbation–Response Scanning reveals key residues for Allosteric Control in Hsp70:
- Penkler, David L, Sensoy, Özge, Atilgan, Canan, Tastan Bishop, Özlem
- Authors: Penkler, David L , Sensoy, Özge , Atilgan, Canan , Tastan Bishop, Özlem
- Date: 2017
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/148195 , vital:38718 , DOI: 10.1021/acs.jcim.6b00775
- Description: Hsp70 molecular chaperones play an important role in maintaining cellular homeostasis, and are implicated in a wide array of cellular processes, including protein recovery from aggregates, cross-membrane protein translocation, and protein biogenesis. Hsp70 consists of two domains, a nucleotide binding domain (NBD) and a substrate binding domain (SBD), each of which communicates via an allosteric mechanism such that the protein interconverts between two functional states, an ATP-bound open conformation and an ADP-bound closed conformation. The exact mechanism for interstate conversion is not as yet fully understood. However, the ligand-bound states of the NBD and SBD as well as interactions with cochaperones such as DnaJ and nucleotide exchange factor are thought to play crucial regulatory roles. In this study, we apply the perturbation–response scanning (PRS) method in combination with molecular dynamics simulations as a computational tool for the identification of allosteric hot residues in the large multidomain Hsp70 protein.
- Full Text:
- Date Issued: 2017
- Authors: Penkler, David L , Sensoy, Özge , Atilgan, Canan , Tastan Bishop, Özlem
- Date: 2017
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/148195 , vital:38718 , DOI: 10.1021/acs.jcim.6b00775
- Description: Hsp70 molecular chaperones play an important role in maintaining cellular homeostasis, and are implicated in a wide array of cellular processes, including protein recovery from aggregates, cross-membrane protein translocation, and protein biogenesis. Hsp70 consists of two domains, a nucleotide binding domain (NBD) and a substrate binding domain (SBD), each of which communicates via an allosteric mechanism such that the protein interconverts between two functional states, an ATP-bound open conformation and an ADP-bound closed conformation. The exact mechanism for interstate conversion is not as yet fully understood. However, the ligand-bound states of the NBD and SBD as well as interactions with cochaperones such as DnaJ and nucleotide exchange factor are thought to play crucial regulatory roles. In this study, we apply the perturbation–response scanning (PRS) method in combination with molecular dynamics simulations as a computational tool for the identification of allosteric hot residues in the large multidomain Hsp70 protein.
- Full Text:
- Date Issued: 2017
- «
- ‹
- 1
- ›
- »