Environmental domains and range-limiting mechanisms: testing the Abundant Centre Hypothesis using southern African sandhoppers
- Baldanzi, Simone, McQuaid, Christopher D, Cannicci, Stefano, Porri, Francesca
- Authors: Baldanzi, Simone , McQuaid, Christopher D , Cannicci, Stefano , Porri, Francesca
- Date: 2013
- Language: English
- Type: Article
- Identifier: vital:6848 , http://hdl.handle.net/10962/d1011108
- Description: Predicting shifts of species geographical ranges is a fundamental challenge for conservation ecologists given the great complexity of factors involved in setting range limits. Distributional patterns are frequently modelled to “simplify” species responses to the environment, yet the central mechanisms that drive a particular pattern are rarely understood. We evaluated the distributions of two sandhopper species (Crustacea, Amphipoda, Talitridae), Talorchestia capensis and Africorchestia quadrispinosa along the Namibian and South African coasts, encompassing three biogeographic regions influenced by two different oceanographic systems, the Benguela and Agulhas currents. We aimed to test whether the Abundant Centre Hypothesis (ACH) can explain the distributions of these species’ abundances, sizes and sex ratios and examined which environmental parameters influence/drive these distributions. Animals were collected during a once-off survey at 29 sites over c.3500 km of coastline. The ACH was tested using a non-parametric constraint space analysis of the goodness of fit of five hypothetical models. Distance Based Linear Modelling (DistLM) was performed to evaluate which environmental traits influenced the distribution data. Abundance, size and sex ratio showed different patterns of distribution. A ramped model fitted the abundance (Ramped North) and size (Ramped South) distribution for A. quadrispinosa. The Inverse Quadratic model fitted the size distribution of T. capensis. Beach slope, salinity, sand temperature and percentage of detritus found on the shore at the time of collection played important roles in driving the abundance of A. quadrispinosa. T. capensis was mainly affected by salinity and the morphodynamic state of the beach. Our results provided only some support for the ACH predictions. The DistLM confirmed that the physical state of the beach is an important factor for sandy beach organisms. The effect of salinity and temperature suggest metabolic responses to local conditions and a role in small to mesoscale shifts in the range of these populations.
- Full Text:
- Authors: Baldanzi, Simone , McQuaid, Christopher D , Cannicci, Stefano , Porri, Francesca
- Date: 2013
- Language: English
- Type: Article
- Identifier: vital:6848 , http://hdl.handle.net/10962/d1011108
- Description: Predicting shifts of species geographical ranges is a fundamental challenge for conservation ecologists given the great complexity of factors involved in setting range limits. Distributional patterns are frequently modelled to “simplify” species responses to the environment, yet the central mechanisms that drive a particular pattern are rarely understood. We evaluated the distributions of two sandhopper species (Crustacea, Amphipoda, Talitridae), Talorchestia capensis and Africorchestia quadrispinosa along the Namibian and South African coasts, encompassing three biogeographic regions influenced by two different oceanographic systems, the Benguela and Agulhas currents. We aimed to test whether the Abundant Centre Hypothesis (ACH) can explain the distributions of these species’ abundances, sizes and sex ratios and examined which environmental parameters influence/drive these distributions. Animals were collected during a once-off survey at 29 sites over c.3500 km of coastline. The ACH was tested using a non-parametric constraint space analysis of the goodness of fit of five hypothetical models. Distance Based Linear Modelling (DistLM) was performed to evaluate which environmental traits influenced the distribution data. Abundance, size and sex ratio showed different patterns of distribution. A ramped model fitted the abundance (Ramped North) and size (Ramped South) distribution for A. quadrispinosa. The Inverse Quadratic model fitted the size distribution of T. capensis. Beach slope, salinity, sand temperature and percentage of detritus found on the shore at the time of collection played important roles in driving the abundance of A. quadrispinosa. T. capensis was mainly affected by salinity and the morphodynamic state of the beach. Our results provided only some support for the ACH predictions. The DistLM confirmed that the physical state of the beach is an important factor for sandy beach organisms. The effect of salinity and temperature suggest metabolic responses to local conditions and a role in small to mesoscale shifts in the range of these populations.
- Full Text:
Associations in ephemeral systems: the lack of trophic relationships between sandhoppers and beach wrack
- Porri, Francesca, Hill, Jaclyn M, McQuaid, Christopher D
- Authors: Porri, Francesca , Hill, Jaclyn M , McQuaid, Christopher D
- Date: 2011
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/444552 , vital:74250 , https://doi.org/10.3354/meps08951
- Description: In ephemeral systems, material subsidies can play a key role in the persistence and connectivity of populations, especially if the organisms living within them are trophically dependent on imported resources. Sandy beaches are heavily subsidized by organic material of both terrestrial and marine origin. For highly mobile supratidal fringe species, such as amphipods, which are marine but with a high tolerance of aerial conditions, such material potentially provides both food and shelter. We investigated the relationship between beach wrack and amphipods by examining the trophic contribution of allochthonous food sources to sandhopper diets using stable isotope analysis. Replicate samples of the sandhopper Talorchestia capensis and several types of beach wrack (including seagrass, wood and different macrophytes) colonized by these amphipods were collected from 11 sites within one biogeographical region along the south coast of South Africa.
- Full Text:
- Authors: Porri, Francesca , Hill, Jaclyn M , McQuaid, Christopher D
- Date: 2011
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/444552 , vital:74250 , https://doi.org/10.3354/meps08951
- Description: In ephemeral systems, material subsidies can play a key role in the persistence and connectivity of populations, especially if the organisms living within them are trophically dependent on imported resources. Sandy beaches are heavily subsidized by organic material of both terrestrial and marine origin. For highly mobile supratidal fringe species, such as amphipods, which are marine but with a high tolerance of aerial conditions, such material potentially provides both food and shelter. We investigated the relationship between beach wrack and amphipods by examining the trophic contribution of allochthonous food sources to sandhopper diets using stable isotope analysis. Replicate samples of the sandhopper Talorchestia capensis and several types of beach wrack (including seagrass, wood and different macrophytes) colonized by these amphipods were collected from 11 sites within one biogeographical region along the south coast of South Africa.
- Full Text:
Sand stress as a non-determinant of habitat segregation of indigenous (Perna perna) and invasive (Mytilus galloprovincialis) mussels in South Africa
- Zardi, Gerardo I, Nicastro, Katy R, Porri, Francesca, McQuaid, Christopher D
- Authors: Zardi, Gerardo I , Nicastro, Katy R , Porri, Francesca , McQuaid, Christopher D
- Date: 2006
- Language: English
- Type: Article
- Identifier: vital:6946 , http://hdl.handle.net/10962/d1011974
- Description: Periodical sand inundation influences diversity and distribution of intertidal species throughout the world. This study investigates the effect of sand stress on survival and on habitat segregation of the two dominant mussel species living in South Africa, the invasive Mytilus galloprovincialis and the indigenous Perna perna. P. perna occupies a lower intertidal zone which, monthly surveys over 1.5 years showed, is covered by sand for longer periods than the higher M. galloprovincialis zone. Despite this, when buried under sand, P. perna mortality rates were significantly higher than those of M. galloprovincialis in both laboratory and in field experiments. Under anoxic condition, P. perna mortality rates were still significantly higher than those for M. galloprovincialis, but both species died later than when exposed to sand burial, underlining the importance of the physical action of sand on mussel internal organs. When buried, both species accumulate sediments within the shell valves while still alive, but the quantities are much greater for P. perna. This suggests that P. perna gills are more severely damaged by sand abrasion and could explain its higher mortality rates. M. galloprovincialis has longer labial palps than P. perna, indicating a higher particle sorting ability and consequently explaining its lower mortality rates when exposed to sand in suspension. Habitat segregation is often explained by physiological tolerances, but in this case, such explanations fail. Although sand stress strongly affects the survival of the two species, it does not explain their vertical zonation. Contrary to our expectations, the species that is less well adapted to cope with sand stress maintains dominance in a habitat where such stress is high.
- Full Text:
- Authors: Zardi, Gerardo I , Nicastro, Katy R , Porri, Francesca , McQuaid, Christopher D
- Date: 2006
- Language: English
- Type: Article
- Identifier: vital:6946 , http://hdl.handle.net/10962/d1011974
- Description: Periodical sand inundation influences diversity and distribution of intertidal species throughout the world. This study investigates the effect of sand stress on survival and on habitat segregation of the two dominant mussel species living in South Africa, the invasive Mytilus galloprovincialis and the indigenous Perna perna. P. perna occupies a lower intertidal zone which, monthly surveys over 1.5 years showed, is covered by sand for longer periods than the higher M. galloprovincialis zone. Despite this, when buried under sand, P. perna mortality rates were significantly higher than those of M. galloprovincialis in both laboratory and in field experiments. Under anoxic condition, P. perna mortality rates were still significantly higher than those for M. galloprovincialis, but both species died later than when exposed to sand burial, underlining the importance of the physical action of sand on mussel internal organs. When buried, both species accumulate sediments within the shell valves while still alive, but the quantities are much greater for P. perna. This suggests that P. perna gills are more severely damaged by sand abrasion and could explain its higher mortality rates. M. galloprovincialis has longer labial palps than P. perna, indicating a higher particle sorting ability and consequently explaining its lower mortality rates when exposed to sand in suspension. Habitat segregation is often explained by physiological tolerances, but in this case, such explanations fail. Although sand stress strongly affects the survival of the two species, it does not explain their vertical zonation. Contrary to our expectations, the species that is less well adapted to cope with sand stress maintains dominance in a habitat where such stress is high.
- Full Text:
Spatio-temporal variability of larval abundance and settlement of Perna perna: differential delivery of mussels
- Porri, Francesca, McQuaid, Christopher D, Radloff, Sarah E
- Authors: Porri, Francesca , McQuaid, Christopher D , Radloff, Sarah E
- Date: 2006
- Language: English
- Type: text , Article
- Identifier: vital:6877 , http://hdl.handle.net/10962/d1011625 , http://dx.doi.org/10.3354/meps315141
- Description: We examined larval availability and settlement of the intertidal mussel Perna perna simultaneously at different spatial and temporal scales using a nested design at 2 sites, 3 km apart on the south coast of South Africa. Each site had 3 locations (300 m apart) where 5 artificial settler collectors were placed about 20 cm apart. Collectors were replaced on temporal scales varying from fortnightly (for 16 mo) to daily (2 series of 15 to 20 d). Each intertidal location was paired with an inshore location (these too were 300 m apart) within 500 m of the shore, where larval availability was measured by 3 vertical plankton hauls collected on the same dates as for settler sampling. There was strong temporal variation in abundances of larvae and settlers, and no correlation (r always < 0.14) was found between the two. Larvae were abundant only at the start of sampling and rare for the rest of the study, while distinct peaks in settler numbers occurred later. No spatial effect was detected for larval availability, while there was strong spatial variation in settlement at the location level. These results indicate that, on scales of 100s of m to km, delivery of larvae from the nearshore water column onto the shore is strongly differential, with some locations consistently receiving more settlers than others. We conclude that, at these sites, the patchiness in settlement observed on scales of 100s of m depends on differential delivery, rather than differential offshore distribution of larvae. We suggest that differential delivery is due to the effect of nearshore bottom topography on local hydrodynamics.
- Full Text:
- Authors: Porri, Francesca , McQuaid, Christopher D , Radloff, Sarah E
- Date: 2006
- Language: English
- Type: text , Article
- Identifier: vital:6877 , http://hdl.handle.net/10962/d1011625 , http://dx.doi.org/10.3354/meps315141
- Description: We examined larval availability and settlement of the intertidal mussel Perna perna simultaneously at different spatial and temporal scales using a nested design at 2 sites, 3 km apart on the south coast of South Africa. Each site had 3 locations (300 m apart) where 5 artificial settler collectors were placed about 20 cm apart. Collectors were replaced on temporal scales varying from fortnightly (for 16 mo) to daily (2 series of 15 to 20 d). Each intertidal location was paired with an inshore location (these too were 300 m apart) within 500 m of the shore, where larval availability was measured by 3 vertical plankton hauls collected on the same dates as for settler sampling. There was strong temporal variation in abundances of larvae and settlers, and no correlation (r always < 0.14) was found between the two. Larvae were abundant only at the start of sampling and rare for the rest of the study, while distinct peaks in settler numbers occurred later. No spatial effect was detected for larval availability, while there was strong spatial variation in settlement at the location level. These results indicate that, on scales of 100s of m to km, delivery of larvae from the nearshore water column onto the shore is strongly differential, with some locations consistently receiving more settlers than others. We conclude that, at these sites, the patchiness in settlement observed on scales of 100s of m depends on differential delivery, rather than differential offshore distribution of larvae. We suggest that differential delivery is due to the effect of nearshore bottom topography on local hydrodynamics.
- Full Text:
Temporal scales of variation in settlement and recruitment of the mussel Perna perna (Linnaeus, 1758)
- Porri, Francesca, McQuaid, Christopher D, Radloff, Sarah E
- Authors: Porri, Francesca , McQuaid, Christopher D , Radloff, Sarah E
- Date: 2006
- Language: English
- Type: Article
- Identifier: vital:6963 , http://hdl.handle.net/10962/d1012026 , http://dx.doi.org/10.1016/j.jembe.2005.11.008
- Description: Population dynamics of many intertidal organisms are strongly affected by the abundance and distribution of larvae arriving on the shore. In particular, not only absolute numbers of settlers but also the degree of synchronisation of settlement can have a strong influence on whether density-dependent or density-independent processes shape adult shape populations. Temporal variation in rates of settlement and recruitment of the mussel Perna perna on the south coast of South Africa was investigated using a nested spatial design at different temporal scales. Variability in settlement at spring tides was examined at two temporal scales: lunar (to investigate the effect of state of the moon on settlement) and tidal (to investigate the influence of state of the tide on mussel settlement). Recruitment over neap tides was examined at one temporal scale, fortnight (to investigate the effect of date on mussel recruitment). Strong temporal variation was evident for both settlement and recruitment, but not at all time scales. Distinct peaks of settler/recruit abundance were observed during the lunar and neap tide studies. Recruitment intensity differed over the course of the year, and pulsing of recruitment was generally synchronised among locations. However, the strength of pulsing differed dramatically among locations, giving a significant interaction between fortnight and location. The finest temporal scale, investigated in the tidal study, did not reveal a significant effect of the state of the tide on settlement. The state of the moon (new or full) was not significant as a main factor (p = 0.052), although generally more settlers arrived on the shore during new moon. Phase of the moon appeared to have an effect on settler abundances, but only when and where densities were high.
- Full Text:
- Authors: Porri, Francesca , McQuaid, Christopher D , Radloff, Sarah E
- Date: 2006
- Language: English
- Type: Article
- Identifier: vital:6963 , http://hdl.handle.net/10962/d1012026 , http://dx.doi.org/10.1016/j.jembe.2005.11.008
- Description: Population dynamics of many intertidal organisms are strongly affected by the abundance and distribution of larvae arriving on the shore. In particular, not only absolute numbers of settlers but also the degree of synchronisation of settlement can have a strong influence on whether density-dependent or density-independent processes shape adult shape populations. Temporal variation in rates of settlement and recruitment of the mussel Perna perna on the south coast of South Africa was investigated using a nested spatial design at different temporal scales. Variability in settlement at spring tides was examined at two temporal scales: lunar (to investigate the effect of state of the moon on settlement) and tidal (to investigate the influence of state of the tide on mussel settlement). Recruitment over neap tides was examined at one temporal scale, fortnight (to investigate the effect of date on mussel recruitment). Strong temporal variation was evident for both settlement and recruitment, but not at all time scales. Distinct peaks of settler/recruit abundance were observed during the lunar and neap tide studies. Recruitment intensity differed over the course of the year, and pulsing of recruitment was generally synchronised among locations. However, the strength of pulsing differed dramatically among locations, giving a significant interaction between fortnight and location. The finest temporal scale, investigated in the tidal study, did not reveal a significant effect of the state of the tide on settlement. The state of the moon (new or full) was not significant as a main factor (p = 0.052), although generally more settlers arrived on the shore during new moon. Phase of the moon appeared to have an effect on settler abundances, but only when and where densities were high.
- Full Text:
- «
- ‹
- 1
- ›
- »