Surface patterning using scanning electrochemical microscopy to locally trigger a “click” chemistry reaction
- Authors: Quinton, Damien , Maringa, Audacity , Griveau, Sophie , Nyokong, Tebello , Bedioui, Fethi
- Date: 2013
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/241805 , vital:50971 , xlink:href="https://doi.org/10.1016/j.elecom.2013.03.021"
- Description: We report on the surface micropatterning of conductive surfaces via the electrochemical triggering of a click reaction, the copper(I) catalyzed azide–alkyne cycloaddition reaction (CuAAC) by SECM via a two-step approach: (i) functionalization on the entire surface with azido-aryl groups by using the diazonium approach followed by (ii) the covalent linkage of alkyne-bearing ferrocene by CuAAC within a local area by SECM. More precisely, the click reaction was triggered by Cu(I) catalyst generation for 30 min at the SECM tip positioned ≈ 10 μm above the azido-aryl modified surface. The dimension of the spot obtained under these conditions was ≈ 75 μm. The electrochemical imaging by SECM of the ultra thin area locally clicked with ferrocene moieties was made thanks to the electrocatalytic properties of the ferrocene modified surface towards ferrocyanide electrooxidation. This local clicking procedure opens the gate to further controlled functionalization of restricted small substrates.
- Full Text:
- Date Issued: 2013
Cyclic voltammetry and spectroelectrochemistry of a novel manganese phthalocyanine substituted with hexynyl groups
- Authors: Quinton, Damien , Antunes, Edith M , Griveau, Sophie , Nyokong, Tebello , Bedioui, Fethi
- Date: 2011
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/248450 , vital:51687 , xlink:href="https://doi.org/10.1016/j.inoche.2010.11.029"
- Description: We report here on the synthesis of a new manganese phthalocyanine complex, namely Mn tetrakis(5-hexyn-oxy) phthalocyanine (3), specifically designed to possess an alkyne moiety for its potential use in controlled immobilization on electrodes via the so called “click” chemistry reaction. The electrochemical activity of complex 3 was investigated by cyclic voltammetry and the nature of the observed redox couples was elucidated by spectroelectrochemistry. This work has also shown that the reduction of Mn(III)Pc complex to Mn(II)Pc is accompanied by the formation of MnPc μ-oxo species. Further reduction results in the formation of Mn(II)Pc(− 3) rather than Mn(I)Pc(− 2).
- Full Text:
- Date Issued: 2011
Surface patterning using scanning electrochemical microscopy to locally trigger a “click” chemistry reaction
- Authors: Quinton, Damien , Maringa, Audacity , Griveau, Sophie , Nyokong, Tebello , Bedioui, Fethi
- Language: English
- Type: Article
- Identifier: vital:7331 , http://hdl.handle.net/10962/d1020592
- Description: We report on the surface micropatterning of conductive surfaces via the electrochemical triggering of a click reaction, the copper(I) catalyzed azide–alkyne cycloaddition reaction (CuAAC) by SECM via a two-step approach: (i) functionalization on the entire surface with azido-aryl groups by using the diazonium approach followed by (ii) the covalent linkage of alkyne-bearing ferrocene by CuAAC within a local area by SECM. More precisely, the click reaction was triggered by Cu(I) catalyst generation for 30 min at the SECM tip positioned ≈ 10 μm above the azido-aryl modified surface. The dimension of the spot obtained under these conditions was ≈ 75 μm. The electrochemical imaging by SECM of the ultra thin area locally clicked with ferrocene moieties was made thanks to the electrocatalytic properties of the ferrocene modified surface towards ferrocyanide electrooxidation. This local clicking procedure opens the gate to further controlled functionalization of restricted small substrates. , Original publication is available at http://dx.doi.org/10.1016/j.elecom.2013.03.021
- Full Text: false