A comparative polarimetric study of the 43 GHz and 86 GHz SiO masers toward the supergiant star VY CMa
- Authors: Richter, Laura
- Date: 2012
- Subjects: Masers Supergiant stars Polarization (Light) Very long baseline interferometry
- Language: English
- Type: Thesis , Doctoral , PhD
- Identifier: vital:5454 , http://hdl.handle.net/10962/d1005239
- Description: The aim of this thesis is to perform observational tests of SiO maser polarisation and excitation models, using component-level comparisons of multiple SiO maser transitions in the 43 GHz and 86 GHz bands at milliarcsecond resolution. These observations reqwre very long baseline interferometric imaging with very accurate polarimetric calibration. The supergiant star VY CMa was chosen as the object of this study due to its high SiO maser luminosity, many detected SiO maser lines, and intrinsic scientific interest. Two epochs of full-polarisation VLBA observations of VY CMa were performed. The Epoch 2 observations were reduced using several new data reduction methods developed as part of this work, and designed specifically to improve the accuracy of circular polarisation calibration of spectral-line VLBI observations at millimetre wavelengths. The accuracy is estimated to be better than 1% using these methods. The Epoch 2 images show a concentration of v= l and v=2 J= 1-0 SiO masers to the east and northeast of the assumed stellar position. The v=l J=2-1 masers were more evenly distributed around the star, with a notable lack of emission in the northeast. There is appreciable spatial overlap between these three lines. The nature of the overlap is generally consistent with the predictions of hydrodynamical circumstellar SiO maser simulations. Where the v=l J = 1-0 and J =2-1 features overlap, the v=l J = 2-1 emission is usually considerably weaker. This is not predicted by current hydrodynamical models, but can be explained in the context of collisional pumping in a low density environment. Six observational tests of weak-splitting maser polarisation models were performed, including intercomparisons of linear polarisation in the v=l J=1-0 and J=2-1lines, linear polarisation versus saturation level, linear polarisation versus distance from the star, circular polarisation in the v= l J = 1-0 and J=2-1 lines, circular versus linear polarisation and modeling of ~ 900 electric-vector position angle rotations. The polarisation model tests generally do not support non-Zeeman circular polarisation mechanisms. For the linear polarisation tests, the results are more consistent with models that predict similar linear polarisation across transitions. The scientific importance of these tests is described in detail and avenues for future work are described.
- Full Text:
- Date Issued: 2012
- Authors: Richter, Laura
- Date: 2012
- Subjects: Masers Supergiant stars Polarization (Light) Very long baseline interferometry
- Language: English
- Type: Thesis , Doctoral , PhD
- Identifier: vital:5454 , http://hdl.handle.net/10962/d1005239
- Description: The aim of this thesis is to perform observational tests of SiO maser polarisation and excitation models, using component-level comparisons of multiple SiO maser transitions in the 43 GHz and 86 GHz bands at milliarcsecond resolution. These observations reqwre very long baseline interferometric imaging with very accurate polarimetric calibration. The supergiant star VY CMa was chosen as the object of this study due to its high SiO maser luminosity, many detected SiO maser lines, and intrinsic scientific interest. Two epochs of full-polarisation VLBA observations of VY CMa were performed. The Epoch 2 observations were reduced using several new data reduction methods developed as part of this work, and designed specifically to improve the accuracy of circular polarisation calibration of spectral-line VLBI observations at millimetre wavelengths. The accuracy is estimated to be better than 1% using these methods. The Epoch 2 images show a concentration of v= l and v=2 J= 1-0 SiO masers to the east and northeast of the assumed stellar position. The v=l J=2-1 masers were more evenly distributed around the star, with a notable lack of emission in the northeast. There is appreciable spatial overlap between these three lines. The nature of the overlap is generally consistent with the predictions of hydrodynamical circumstellar SiO maser simulations. Where the v=l J = 1-0 and J =2-1 features overlap, the v=l J = 2-1 emission is usually considerably weaker. This is not predicted by current hydrodynamical models, but can be explained in the context of collisional pumping in a low density environment. Six observational tests of weak-splitting maser polarisation models were performed, including intercomparisons of linear polarisation in the v=l J=1-0 and J=2-1lines, linear polarisation versus saturation level, linear polarisation versus distance from the star, circular polarisation in the v= l J = 1-0 and J=2-1 lines, circular versus linear polarisation and modeling of ~ 900 electric-vector position angle rotations. The polarisation model tests generally do not support non-Zeeman circular polarisation mechanisms. For the linear polarisation tests, the results are more consistent with models that predict similar linear polarisation across transitions. The scientific importance of these tests is described in detail and avenues for future work are described.
- Full Text:
- Date Issued: 2012
A VLBI polarisation study of 43 GHZ SiO masers towards VY CMA
- Authors: Richter, Laura
- Date: 2006
- Subjects: Very long baseline interferometry , Polarization (Light) , Masers
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: vital:5498 , http://hdl.handle.net/10962/d1005284
- Description: This thesis reports the calibration, imaging and analysis of one epoch of VLBI observations of the v (italics) = J (italics) = 1-0 transition of SiO towards VY CMa. Full polarisation information was recorded, allowing high resolution synthesis maps of each of the four Stokes parameters to be produced. A total of 81 maser components were extracted from the total intensity map, each approximately 1 mas in size. The emission spans approximately 100 x 80 mas in right ascension and declination and is concentrated to the east. The maser component positions were fitted to a ring of radius ~ 3.2R₊ (italics), or 7.2 x 1O¹⁴ cm for a stellar distance of 1.5 kpc. If the stellar position is assumed to be the centre of this ring then almost all of the maser components fall within the inner dust shell radius, which is at ~ 5R (italics)ϰ All of the maser components fall between 1.5R (italics)ϰ and 6R (italics)ϰ. A velocity gradient with position angle was observed in the sparsely filled western region of the maser ring. If interpreted as evidence of shell rotation, this gradient implies a rotational velocity of v (italics) rot (subscirpt) sin i (italics) = 18 km.s⁻¹. The fractional circular and linear polarisations of the maser spots were derived from the Stokes parameter maps. The mean fractional circular polarisation of the masers components was ~ 2 percent and the median fractional linear polarisation was ~ 6 percent, with many spots displaying over ~ 30 percent linear polarisation. The mean circular polarisation implies a magnetic field of ~ 4 G in the SiO maser region if the polarisation is due to Zeeman splitting. Two maser components display a rotation of linear polarisation position angle with velocity, possibly implying a connection between the magnetic field and the velocity field variations in the region of these components.
- Full Text:
- Date Issued: 2006
- Authors: Richter, Laura
- Date: 2006
- Subjects: Very long baseline interferometry , Polarization (Light) , Masers
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: vital:5498 , http://hdl.handle.net/10962/d1005284
- Description: This thesis reports the calibration, imaging and analysis of one epoch of VLBI observations of the v (italics) = J (italics) = 1-0 transition of SiO towards VY CMa. Full polarisation information was recorded, allowing high resolution synthesis maps of each of the four Stokes parameters to be produced. A total of 81 maser components were extracted from the total intensity map, each approximately 1 mas in size. The emission spans approximately 100 x 80 mas in right ascension and declination and is concentrated to the east. The maser component positions were fitted to a ring of radius ~ 3.2R₊ (italics), or 7.2 x 1O¹⁴ cm for a stellar distance of 1.5 kpc. If the stellar position is assumed to be the centre of this ring then almost all of the maser components fall within the inner dust shell radius, which is at ~ 5R (italics)ϰ All of the maser components fall between 1.5R (italics)ϰ and 6R (italics)ϰ. A velocity gradient with position angle was observed in the sparsely filled western region of the maser ring. If interpreted as evidence of shell rotation, this gradient implies a rotational velocity of v (italics) rot (subscirpt) sin i (italics) = 18 km.s⁻¹. The fractional circular and linear polarisations of the maser spots were derived from the Stokes parameter maps. The mean fractional circular polarisation of the masers components was ~ 2 percent and the median fractional linear polarisation was ~ 6 percent, with many spots displaying over ~ 30 percent linear polarisation. The mean circular polarisation implies a magnetic field of ~ 4 G in the SiO maser region if the polarisation is due to Zeeman splitting. Two maser components display a rotation of linear polarisation position angle with velocity, possibly implying a connection between the magnetic field and the velocity field variations in the region of these components.
- Full Text:
- Date Issued: 2006
- «
- ‹
- 1
- ›
- »