Sex demographics alter the effect of habitat structure on predation by a temporary pond specialist
- Cuthbert, Ross N, Sithagu, Rotondwa, Weyl, Olaf L F, Froneman, P William, Wasserman, Ryan J, Dick, Jaimie T A, Callaghan, Amanda, Foord, Stefan, Dalu, Tatenda
- Authors: Cuthbert, Ross N , Sithagu, Rotondwa , Weyl, Olaf L F , Froneman, P William , Wasserman, Ryan J , Dick, Jaimie T A , Callaghan, Amanda , Foord, Stefan , Dalu, Tatenda
- Date: 2020
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/466968 , vital:76803 , https://doi.org/10.1016/j.limno.2020.125747
- Description: Habitat structure can profoundly influence interaction strengths between predators and prey. Spatio-temporal habitat structure in temporary wetland ecosystems is particularly variable because of fluctuations in water levels and vegetation colonisation dynamics. Demographic characteristics within animal populations may also alter the influence of habitat structure on biotic interactions, but have remained untested. Here, we investigate the influence of vegetation habitat structure on the consumption of larval mosquito prey by the calanoid copepod Lovenula raynerae, a temporary pond specialist. Increased habitat complexity reduced predation, and gravid female copepods were generally more voracious than male copepods in simplified habitats. However, sexes were more similar as habitat complexity increased. Type II functional responses were exhibited by the copepods irrespective of habitat complexity and sex, owing to consistent high prey acquisition at low prey densities. Attack rates by copepods were relatively unaffected by the complexity gradient, whilst handling times lengthened under more complex environments in gravid female copepods. We demonstrate emergent effects of habitat complexity across species demographics, with predation by males more robust to differences in habitat complexity than females. For ecosystems such as temporary ponds where sex-skewed predator ratios develop, our laboratory findings suggest habitat complexity and sex demographics mediate prey risk.
- Full Text:
- Date Issued: 2020
- Authors: Cuthbert, Ross N , Sithagu, Rotondwa , Weyl, Olaf L F , Froneman, P William , Wasserman, Ryan J , Dick, Jaimie T A , Callaghan, Amanda , Foord, Stefan , Dalu, Tatenda
- Date: 2020
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/466968 , vital:76803 , https://doi.org/10.1016/j.limno.2020.125747
- Description: Habitat structure can profoundly influence interaction strengths between predators and prey. Spatio-temporal habitat structure in temporary wetland ecosystems is particularly variable because of fluctuations in water levels and vegetation colonisation dynamics. Demographic characteristics within animal populations may also alter the influence of habitat structure on biotic interactions, but have remained untested. Here, we investigate the influence of vegetation habitat structure on the consumption of larval mosquito prey by the calanoid copepod Lovenula raynerae, a temporary pond specialist. Increased habitat complexity reduced predation, and gravid female copepods were generally more voracious than male copepods in simplified habitats. However, sexes were more similar as habitat complexity increased. Type II functional responses were exhibited by the copepods irrespective of habitat complexity and sex, owing to consistent high prey acquisition at low prey densities. Attack rates by copepods were relatively unaffected by the complexity gradient, whilst handling times lengthened under more complex environments in gravid female copepods. We demonstrate emergent effects of habitat complexity across species demographics, with predation by males more robust to differences in habitat complexity than females. For ecosystems such as temporary ponds where sex-skewed predator ratios develop, our laboratory findings suggest habitat complexity and sex demographics mediate prey risk.
- Full Text:
- Date Issued: 2020
Water volume differentially modifies copepod predatory strengths on two prey types
- Cuthbert, Ross N, Sithagu, Rotondwa, Weyl, Olaf L F, Froneman, P William, Wasserman, Ryan J, Dick, Jaimie T A, Callaghan, Amanda, Foord, Stefan, Dalu, Tatenda
- Authors: Cuthbert, Ross N , Sithagu, Rotondwa , Weyl, Olaf L F , Froneman, P William , Wasserman, Ryan J , Dick, Jaimie T A , Callaghan, Amanda , Foord, Stefan , Dalu, Tatenda
- Date: 2020
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/466979 , vital:76804 , https://doi.org/10.1016/j.limno.2020.125747
- Description: Predatory interaction strengths are highly context-dependent, and in temporary aquatic ecosystems, may be affected by water volume changes. We examine the influence of water volume on Lovenula raynerae (Copepoda) functional responses towards two temporary pond prey types. Daphnia prey risk was not affected by increasing water volume, whereas for Culex prey risk was reduced. Accordingly, water volume changes through the hydroperiod may have species-specific effects on prey, with implications for population persistence under environmental change.
- Full Text:
- Date Issued: 2020
- Authors: Cuthbert, Ross N , Sithagu, Rotondwa , Weyl, Olaf L F , Froneman, P William , Wasserman, Ryan J , Dick, Jaimie T A , Callaghan, Amanda , Foord, Stefan , Dalu, Tatenda
- Date: 2020
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/466979 , vital:76804 , https://doi.org/10.1016/j.limno.2020.125747
- Description: Predatory interaction strengths are highly context-dependent, and in temporary aquatic ecosystems, may be affected by water volume changes. We examine the influence of water volume on Lovenula raynerae (Copepoda) functional responses towards two temporary pond prey types. Daphnia prey risk was not affected by increasing water volume, whereas for Culex prey risk was reduced. Accordingly, water volume changes through the hydroperiod may have species-specific effects on prey, with implications for population persistence under environmental change.
- Full Text:
- Date Issued: 2020
- «
- ‹
- 1
- ›
- »