Mutational analysis of the PacC binding sites within the aflR promoter in Aspergillus flavus
- Authors: Suleman, Essa
- Date: 2011
- Subjects: Mutation (Biology) , Genetic regulation , Proteins -- Synthesis , Microbiological synthesis
- Language: English
- Type: Thesis , Doctoral , PhD
- Identifier: vital:10336 , http://hdl.handle.net/10948/d1012683 , Mutation (Biology) , Genetic regulation , Proteins -- Synthesis , Microbiological synthesis
- Description: It is generally known that media containing simple sugars (sucrose, glucose) and organic nitrogen sources (ammonium) when buffered to acidic pH stimulates aflatoxin production in Aspergillus flavus & A. parasiticus while lactose, nitrate and an alkaline pH inhibit aflatoxin biosynthesis. It has been shown that pH of the growth medium is the most important regulatory factor for aflatoxin biosynthesis since media containing stimulatory carbon and/or nitrogen sources (sucrose and ammonia) do not enhance aflatoxin (or sterigmatocystin) production at alkaline pH. RNA interference (in A. flavus) of the pH regulatory transcription factor, PacC, resulted in aflatoxin production under acidic and alkaline pH conditions whilst wildtype Aspergillus flavus produced aflatoxins only under acidic conditions. This conclusively proved that PacC negatively regulates aflatoxin production at alkaline pH in A. flavus. However the exact mechanism involved in PacC repression of aflatoxin biosynthesis at alkaline pH still remains unknown. The AflR protein is essential for expression of several genes in the aflatoxin biosynthetic cluster. In the current study, sequence analysis of the aflR promoter indicated the presence of two putative PacC binding sites within the aflR promoter of A. flavus 3357WT located at positions -162 and -487 bp from the start codon. The presence of the PacC binding sites in the aflR promoter indicated a possible link between aflR expression and PacC regulation under alkaline conditions. Thus, in this study, it was hypothesized that at alkaline pH, PacC inhibits aflR expression by binding to one or both of the PacC binding sites within the aflR promoter. This in turn, would result in inhibition of aflatoxin biosynthesis since expression of several aflatoxin biosynthetic pathway genes is dependent on activation by AflR. The aim and objective of this study was to test the validity of this hypothesis i.e. that at alkaline pH PacC binds to one or both of its recognition sites within the aflR promoter thereby inhibiting aflR expression which subsequently would result in inhibition of aflatoxin biosynthesis. This was done by first mutating each individual and then both PacC binding sites in the A. flavus 3357 aflR promoter via Single-Joint PCR (SJ-PCR) and fusing the wildtype and each mutated aflR promoter to the Green Fluorescent Protein (gfp) gene and the trpC terminator to yield a functional expression vector. These constructs were then transformed into A. flavus 3357.5. Positive transformants were confirmed to express GFP by fluorescence microscopy and spectrofluorometry. Quantification of GFP protein levels of the various transformants in this study indicated that PacC negatively regulated aflR promoter activity at alkaline pH. RT-qPCR was performed on positive transformants after growth on SLS medium at acidic and alkaline pH to determine if PacC negatively regulated aflR promoter activity at alkaline pH and to determine whether PacC binds preferentially to one or both recognition sites within the aflR promoter. RT-qPCR analysis suggest that PacC binds non-preferentially to both recognition sites within the aflR promoter on sucrose and lactose media at alkaline pH, although mutation of PacC binding site 2 results in a slightly higher expression compared to mutation of PacC binding site 1. Increasing the concentration of an aflatoxin conducive nitrogen source stimulated aflR promoter activity but this was not sufficient to overcome negative regulation by PacC. It is generally known that repression of aflR expression results in repression of aflatoxin biosynthesis irrespective of pH. The results of this study strongly suggest that PacC negatively regulates aflR promoter activity at alkaline pH by binding to one or both PacC recognition sites within the aflR promoter. Since aflR promoter activity is repressed by PacC at alkaline pH, this substantiates the hypothesis that PacC represses aflatoxin biosynthesis by inhibiting expression of aflR. Furthermore, the results of this study indicated that there may be some PacC protein present in the active form at acidic pH irrespective of the carbon source and nitrogen source used in the growth medium. RT-qPCR analysis indicated that any active PacC present at acidic pH may cause repression of the aflR promoter based on the position of the PacC binding site relative to the aflR start codon, although it appears that PacC may have a higher affinity for PacC binding site 2 (which is closer to the aflR start codon).
- Full Text:
- Date Issued: 2011
The role of pacC in Aspergillus flavus
- Authors: Suleman, Essa
- Date: 2007
- Subjects: Fungi -- Biotechnology , Pathogenic microorganisms
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: vital:10332 , http://hdl.handle.net/10948/612 , Fungi -- Biotechnology , Pathogenic microorganisms
- Description: Many microorganisms, and in particular fungi, are able to grow over a wide pH range. Thus, these microorganisms must possess some regulatory mechanism or system that senses the environmental pH signal and ensures that gene expression of certain molecules is tailored to the pH of the environment (Penalva and Arst, 2002). In Aspergillus species and several other fungi, pH regulation is mediated by seven genes viz. palA, palB, palC, palF, palH, palI and the global pH regulatory gene, pacC (MacAbe et al, 1996; Negrete-Urtasun, 1999; Denison, 2000). The activated form of the PacC protein activates genes that are required at alkaline pH, e.g. genes coding for alkaline phosphatases, and represses certain genes that are functional at acidic pH, e.g. genes encoding acid phosphatases (Negrete-Urtasun, 1999). PacC (and its homologues) also positively regulates genes involved in penicillin biosynthesis, e.g. the isopenicillin N synthase gene, ipnA, in A. nidulans (Penalva and Arst, 2002). It has also been hypothesised that pacC may negatively regulate aflatoxin biosynthesis, a carcinogenic secondary metabolite in several species of Aspergillus (Keller et al, 1997). To elucidate the role of pacC a novel method of post-transcriptional gene silencing known as RNA interference was utilized. This method involved the cloning of a partial pacC gene fragment first in the forward and then the reverse orientations in a fungal expression cassette to create an RNA interference (RNAi) vector. The unique structure of this vector would allow the cloned fragments to be expressed and the resulting RNA to immediately form a double stranded stem-loop structure or short hairpin RNA (shRNA; McDonald et al, 2005). The formation of this shRNA, in turn, would be responsible for activating the endogenous RNA degradation complexes that would lead to mRNA degradation and subsequent gene silencing (Liu et al, 2003; Kadotoni et al, 2003; McDonald et al, 2005). The results presented here have shown that confirmed pacC RNAi mutants produced aflatoxins irrespective of environmental pH (i.e. the mutants produce aflatoxins under acidic and alkaline conditions). Thus, pacC is essential for pH regulation of aflatoxin production in A. flavus. There are numerous other biological (e.g. presence of oxylipins, lipooxygenases) and non-biological factors (pH, carbon source etc.) which affect maize colonisation and aflatoxin production by A. flavus (Burrow et al, 1996; Wilson et al, 2001; Calvo et al; 2002; Tsitsigiannis et al, 2006). However, all the genetic mechanisms involved have as yet not been identified. It has been shown by Caracuel et al (2003) that pacC acts as a negative virulence regulator in plants and these workers have hypothesised that PacC prevents expression of genes that are important for infection and virulence of the pathogen. Therefore the physiological effects that pacC silencing had on the growth, conidiation and pathogenicity of A. flavus mutants were also investigated. The results of this study showed that pacC does not play a significant role in primary growth and development but does affect conidial production. SEM results showed that mutants have many “open ended” phialides and poorly developed conidiophores. This would suggest that pacC activation of conidial production genes is also required. Furthermore, pacC RNAi silencing severely impaired the ability of the A. flavus mutants to infect and cause damage on maize. The results obtained here are similar to that of pacC null mutants in A. nidulans, C. albicans and F. oxysporum which also exhibited low pathogenicity (Davis et al, 2000; Fonzi, W.A, 2002; Caracuel et al, 2003; Bignell et al, 2005 and Cornet et al, 2005). This study indicates that pathogenicity of A. flavus on maize is directly related to the structural integrity of conidia, which in turn is greatly influenced by PacC. This gene is a global transcriptional regulator and may either repress or activate one or many genes in each of the above pathways (Penalva and Arst, 2002). Studies on the genetic mechanisms of pacC regulation on these pathways are needed to elucidate the mechanisms of activation or repression of these genes.
- Full Text:
- Date Issued: 2007