The In Silico Prediction of hotspot residues that contribute to the structural stability of subunit interfaces of a Picornavirus Capsid:
- Upfold, Nicole, Ross, Caroline J, Tastan Bishop, Özlem, Knox, Caroline M
- Authors: Upfold, Nicole , Ross, Caroline J , Tastan Bishop, Özlem , Knox, Caroline M
- Date: 2020
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/149970 , vital:38919 , https://doi.org/10.3390/v12040387
- Description: The assembly of picornavirus capsids proceeds through the stepwise oligomerization of capsid protein subunits and depends on interactions between critical residues known as hotspots. Few studies have described the identification of hotspot residues at the protein subunit interfaces of the picornavirus capsid, some of which could represent novel drug targets. Using a combination of accessible web servers for hotspot prediction, we performed a comprehensive bioinformatic analysis of the hotspot residues at the intraprotomer, interprotomer and interpentamer interfaces of the Theiler’s murine encephalomyelitis virus (TMEV) capsid.
- Full Text:
- Date Issued: 2020
- Authors: Upfold, Nicole , Ross, Caroline J , Tastan Bishop, Özlem , Knox, Caroline M
- Date: 2020
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/149970 , vital:38919 , https://doi.org/10.3390/v12040387
- Description: The assembly of picornavirus capsids proceeds through the stepwise oligomerization of capsid protein subunits and depends on interactions between critical residues known as hotspots. Few studies have described the identification of hotspot residues at the protein subunit interfaces of the picornavirus capsid, some of which could represent novel drug targets. Using a combination of accessible web servers for hotspot prediction, we performed a comprehensive bioinformatic analysis of the hotspot residues at the intraprotomer, interprotomer and interpentamer interfaces of the Theiler’s murine encephalomyelitis virus (TMEV) capsid.
- Full Text:
- Date Issued: 2020
The generation and characterisation of neutralising antibodies against the Theiler’s murine encephalomyelitis virus (TMEV) GDVII capsid reveals the potential binding site of the host cell co-receptor, heparan sulfate:
- Upfold, Nicole, Ross, Caroline J, Tastan Bishop, Özlem, Luke, Garry A, Knox, Caroline M
- Authors: Upfold, Nicole , Ross, Caroline J , Tastan Bishop, Özlem , Luke, Garry A , Knox, Caroline M
- Date: 2018
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/148181 , vital:38717 , DOI: 10.1016/j.virusres.2017.11.017
- Description: The early stages of picornavirus capsid assembly and the host factors involved are poorly understood. Since the localisation of viral proteins in infected cells can provide information on their function, antibodies against purified Theiler's murine encephalomyelitis virus (TMEV) GDVII capsids were generated by immunisation of rabbits. The resultant anti-TMEV capsid antibodies recognised a C-terminal region of VP1 but not VP2 or VP3 by Western analysis. Examination of the sites of TMEV capsid assembly by indirect immunofluorescence and confocal microscopy showed that at 5 h post infection, capsid signal was diffusely cytoplasmic with strong perinuclear staining and moved into large punctate structures from 6 to 8 h post infection.
- Full Text:
- Date Issued: 2018
- Authors: Upfold, Nicole , Ross, Caroline J , Tastan Bishop, Özlem , Luke, Garry A , Knox, Caroline M
- Date: 2018
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/148181 , vital:38717 , DOI: 10.1016/j.virusres.2017.11.017
- Description: The early stages of picornavirus capsid assembly and the host factors involved are poorly understood. Since the localisation of viral proteins in infected cells can provide information on their function, antibodies against purified Theiler's murine encephalomyelitis virus (TMEV) GDVII capsids were generated by immunisation of rabbits. The resultant anti-TMEV capsid antibodies recognised a C-terminal region of VP1 but not VP2 or VP3 by Western analysis. Examination of the sites of TMEV capsid assembly by indirect immunofluorescence and confocal microscopy showed that at 5 h post infection, capsid signal was diffusely cytoplasmic with strong perinuclear staining and moved into large punctate structures from 6 to 8 h post infection.
- Full Text:
- Date Issued: 2018
Subcellular localisation of Theiler's murine encephalomyelitis virus (TMEV) capsid subunit VP1 vis-á-vis host protein Hsp90:
- Ross, Caroline J, Upfold, Nicole, Luke, Garry A, Tastan Bishop, Özlem, Knox, Caroline M
- Authors: Ross, Caroline J , Upfold, Nicole , Luke, Garry A , Tastan Bishop, Özlem , Knox, Caroline M
- Date: 2016
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/148016 , vital:38702 , DOI: 10.1016/j.virusres.2016.06.003
- Description: The VP1 subunit of the picornavirus capsid is the major antigenic determinant and mediates host cell attachment and virus entry. To investigate the localisation of Theiler's murine encephalomyelitis virus (TMEV) VP1 during infection, a bioinformatics approach was used to predict a surface-exposed, linear epitope region of the protein for subsequent expression and purification. This region, comprising the N-terminal 112 amino acids of the protein, was then used for rabbit immunisation, and the resultant polyclonal antibodies were able to recognise full length VP1 in infected cell lysates by Western blot. Following optimisation, the antibodies were used to investigate the localisation of VP1 in relation to Hsp90 in infected cells by indirect immunofluorescence and confocal microscopy.
- Full Text:
- Date Issued: 2016
- Authors: Ross, Caroline J , Upfold, Nicole , Luke, Garry A , Tastan Bishop, Özlem , Knox, Caroline M
- Date: 2016
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/148016 , vital:38702 , DOI: 10.1016/j.virusres.2016.06.003
- Description: The VP1 subunit of the picornavirus capsid is the major antigenic determinant and mediates host cell attachment and virus entry. To investigate the localisation of Theiler's murine encephalomyelitis virus (TMEV) VP1 during infection, a bioinformatics approach was used to predict a surface-exposed, linear epitope region of the protein for subsequent expression and purification. This region, comprising the N-terminal 112 amino acids of the protein, was then used for rabbit immunisation, and the resultant polyclonal antibodies were able to recognise full length VP1 in infected cell lysates by Western blot. Following optimisation, the antibodies were used to investigate the localisation of VP1 in relation to Hsp90 in infected cells by indirect immunofluorescence and confocal microscopy.
- Full Text:
- Date Issued: 2016
- «
- ‹
- 1
- ›
- »