Detection of the in vitro modulation of Plasmodium falciparum Arf1 by Sec7 and ArfGAP domains using a colorimetric plate-based assay:
- Swart, Tarryn, Khan, Farrah D, Ntlantsana, Apelele, Laming, Dustin, Veale, Clinton G L, Przyborski, Jude M, Edkins, Adrienne L, Hoppe, Heinrich C
- Authors: Swart, Tarryn , Khan, Farrah D , Ntlantsana, Apelele , Laming, Dustin , Veale, Clinton G L , Przyborski, Jude M , Edkins, Adrienne L , Hoppe, Heinrich C
- Date: 2020
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/165418 , vital:41242 , https://0-doi.org.wam.seals.ac.za/10.1038/s41598-020-61101-3
- Description: The regulation of human Arf1 GTPase activity by ArfGEFs that stimulate GDP/GTP exchange and ArfGAPs that mediate GTP hydrolysis has attracted attention for the discovery of Arf1 inhibitors as potential anti-cancer agents. The malaria parasite Plasmodium falciparum encodes a Sec7 domain-containing protein - presumably an ArfGEF - and two putative ArfGAPs, as well as an Arf1 homologue (PfArf1) that is essential for blood-stage parasite viability. However, ArfGEF and ArfGAP-mediated activation/deactivation of PfArf1 has not been demonstrated.
- Full Text:
- Authors: Swart, Tarryn , Khan, Farrah D , Ntlantsana, Apelele , Laming, Dustin , Veale, Clinton G L , Przyborski, Jude M , Edkins, Adrienne L , Hoppe, Heinrich C
- Date: 2020
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/165418 , vital:41242 , https://0-doi.org.wam.seals.ac.za/10.1038/s41598-020-61101-3
- Description: The regulation of human Arf1 GTPase activity by ArfGEFs that stimulate GDP/GTP exchange and ArfGAPs that mediate GTP hydrolysis has attracted attention for the discovery of Arf1 inhibitors as potential anti-cancer agents. The malaria parasite Plasmodium falciparum encodes a Sec7 domain-containing protein - presumably an ArfGEF - and two putative ArfGAPs, as well as an Arf1 homologue (PfArf1) that is essential for blood-stage parasite viability. However, ArfGEF and ArfGAP-mediated activation/deactivation of PfArf1 has not been demonstrated.
- Full Text:
Use of a non-hepatic cell line highlights limitations associated with cell-based assessment of metabolically induced toxicity:
- Weyers, Carli, Dingle, Laura M K, Wilhelmi, Brendan S, Edkins, Adrienne L, Veale, Clinton G L
- Authors: Weyers, Carli , Dingle, Laura M K , Wilhelmi, Brendan S , Edkins, Adrienne L , Veale, Clinton G L
- Date: 2020
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/160290 , vital:40431 , DOI: 10.1080/01480545.2019.1585869
- Description: Metabolically induced drug-toxicity is a major cause of drug failure late in drug optimization phases. Accordingly, in vitro metabolic profiling of compounds is being introduced at earlier stages of the drug discovery pipeline. An increasingly common method to obtain these profiles is through overexpression of key CYP450 metabolic enzymes in immortalized liver cells, to generate competent hepatocyte surrogates. Enhanced cytotoxicity is presumed to be due to toxic metabolite production via the overexpressed enzyme. However, metabolically induced toxicity is a complex multi-parameter phenomenon and the potential background contribution to metabolism arising from the use of liver cells which endogenously express CYP450 isoforms is consistently overlooked. In this study, we sought to reduce the potential background interference by applying this methodology in kidney-derived HEK293 cells which lack endogenous CYP450 expression.
- Full Text:
- Authors: Weyers, Carli , Dingle, Laura M K , Wilhelmi, Brendan S , Edkins, Adrienne L , Veale, Clinton G L
- Date: 2020
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/160290 , vital:40431 , DOI: 10.1080/01480545.2019.1585869
- Description: Metabolically induced drug-toxicity is a major cause of drug failure late in drug optimization phases. Accordingly, in vitro metabolic profiling of compounds is being introduced at earlier stages of the drug discovery pipeline. An increasingly common method to obtain these profiles is through overexpression of key CYP450 metabolic enzymes in immortalized liver cells, to generate competent hepatocyte surrogates. Enhanced cytotoxicity is presumed to be due to toxic metabolite production via the overexpressed enzyme. However, metabolically induced toxicity is a complex multi-parameter phenomenon and the potential background contribution to metabolism arising from the use of liver cells which endogenously express CYP450 isoforms is consistently overlooked. In this study, we sought to reduce the potential background interference by applying this methodology in kidney-derived HEK293 cells which lack endogenous CYP450 expression.
- Full Text:
Expanding the SAR of Nontoxic Antiplasmodial Indolyl-3-ethanone Ethers and Thioethers:
- Lunga, Mayibongwe J, Chisango, Ruramai L, Weyers, Carli, Isaacs, Michelle, Taylor, Dale, Edkins, Adrienne L, Khanye, Setshaba D, Hoppe, Heinrich C, Veale, Clinton G L
- Authors: Lunga, Mayibongwe J , Chisango, Ruramai L , Weyers, Carli , Isaacs, Michelle , Taylor, Dale , Edkins, Adrienne L , Khanye, Setshaba D , Hoppe, Heinrich C , Veale, Clinton G L
- Date: 2018
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/164389 , vital:41114 , DOI: 10.1002/cmdc.201800235
- Description: Despite major strides in reducing Plasmodium falciparum infections, this parasite still accounts for roughly half a million annual deaths. This problem is compounded by the decreased efficacy of artemisinin combination therapies. Therefore, the development and optimisation of novel antimalarial chemotypes is critical. In this study, we describe our strategic approach to optimise a class of previously reported antimalarials, resulting in the discovery of 1-(5-chloro-1H-indol-3-yl)-2-[(4-cyanophenyl)thio]ethanone (13) and 1-(5-chloro-1H-indol-3-yl)-2-[(4-nitrophenyl)thio]ethanone (14), whose activity was equipotent to that of chloroquine against the P. falciparum 3D7 strain.
- Full Text:
- Authors: Lunga, Mayibongwe J , Chisango, Ruramai L , Weyers, Carli , Isaacs, Michelle , Taylor, Dale , Edkins, Adrienne L , Khanye, Setshaba D , Hoppe, Heinrich C , Veale, Clinton G L
- Date: 2018
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/164389 , vital:41114 , DOI: 10.1002/cmdc.201800235
- Description: Despite major strides in reducing Plasmodium falciparum infections, this parasite still accounts for roughly half a million annual deaths. This problem is compounded by the decreased efficacy of artemisinin combination therapies. Therefore, the development and optimisation of novel antimalarial chemotypes is critical. In this study, we describe our strategic approach to optimise a class of previously reported antimalarials, resulting in the discovery of 1-(5-chloro-1H-indol-3-yl)-2-[(4-cyanophenyl)thio]ethanone (13) and 1-(5-chloro-1H-indol-3-yl)-2-[(4-nitrophenyl)thio]ethanone (14), whose activity was equipotent to that of chloroquine against the P. falciparum 3D7 strain.
- Full Text:
NMR structural elucidation of channaine, an unusual alkaloid from Sceletium tortuosum:
- Veale, Clinton G L, Chen, Weiyang, Chaudhary, Sushil, Kituyi, Sarah N, Isaacs, Michelle, Hoppe, Heinrich C, Edkins, Adrienne L, Combrinck, Sandra, Mehari, Bewketu, Viljoen, Alvaro
- Authors: Veale, Clinton G L , Chen, Weiyang , Chaudhary, Sushil , Kituyi, Sarah N , Isaacs, Michelle , Hoppe, Heinrich C , Edkins, Adrienne L , Combrinck, Sandra , Mehari, Bewketu , Viljoen, Alvaro
- Date: 2018
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/164345 , vital:41110 , DOI: 10.1016/j.phytol.2017.11.018
- Description: Chemical interrogation of the Sceletium genus and Amaryllidaceae family of plants has yielded a diverse array of aryl-hydroindole containing alkaloids. Included in this class is channaine, which was tentatively identified, without comprehensive structural elucidation from Sceletium tortuosum in 1957. Following its isolation from S. strictum, the structure of channaine was eventually resolved by X-ray crystallographic analysis, which revealed an unusual cage-like ring structure at the interface of two aryl-hydroindole subunits. However, since this report in 1978, channaine has not re-appeared in the literature. In this letter, the full NMR characterisation of channaine, isolated from S. tortuosum collected from St Helena in the Western Cape Province of South Africa, is reported for the first time.
- Full Text:
- Authors: Veale, Clinton G L , Chen, Weiyang , Chaudhary, Sushil , Kituyi, Sarah N , Isaacs, Michelle , Hoppe, Heinrich C , Edkins, Adrienne L , Combrinck, Sandra , Mehari, Bewketu , Viljoen, Alvaro
- Date: 2018
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/164345 , vital:41110 , DOI: 10.1016/j.phytol.2017.11.018
- Description: Chemical interrogation of the Sceletium genus and Amaryllidaceae family of plants has yielded a diverse array of aryl-hydroindole containing alkaloids. Included in this class is channaine, which was tentatively identified, without comprehensive structural elucidation from Sceletium tortuosum in 1957. Following its isolation from S. strictum, the structure of channaine was eventually resolved by X-ray crystallographic analysis, which revealed an unusual cage-like ring structure at the interface of two aryl-hydroindole subunits. However, since this report in 1978, channaine has not re-appeared in the literature. In this letter, the full NMR characterisation of channaine, isolated from S. tortuosum collected from St Helena in the Western Cape Province of South Africa, is reported for the first time.
- Full Text:
Facile synthesis and biological evaluation of assorted indolyl-3-amides and esters from a single, stable carbonyl nitrile intermediate
- Veale, Clinton G L, Edkins, Adrienne L, de la Mare, Jo-Anne, de Kock, Carmen, Smith, Peter J, Khanye, Setshaba D
- Authors: Veale, Clinton G L , Edkins, Adrienne L , de la Mare, Jo-Anne , de Kock, Carmen , Smith, Peter J , Khanye, Setshaba D
- Date: 2015
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/66221 , vital:28919 , https://doi.org/10.1016/j.tetlet.2015.02.090
- Description: publisher version , The synthesis of biologically relevant amides and esters is routinely conducted under complex reaction conditions or requires the use of additional catalysts in order to generate sensitive electrophilic species for attack by a nucleophile. Here we present the synthesis of different indolic esters and amides from indolyl-3-carbonyl nitrile, without the requirement of anhydrous reaction conditions or catalysts. Additionally, we screened these compounds for potential in vitro antimalarial and anticancer activity, revealing 1H-indolyl-3-carboxylic acid 3-(indolyl-3-carboxamide)aminobenzyl ester to have moderate activity against both lines.
- Full Text: false
- Authors: Veale, Clinton G L , Edkins, Adrienne L , de la Mare, Jo-Anne , de Kock, Carmen , Smith, Peter J , Khanye, Setshaba D
- Date: 2015
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/66221 , vital:28919 , https://doi.org/10.1016/j.tetlet.2015.02.090
- Description: publisher version , The synthesis of biologically relevant amides and esters is routinely conducted under complex reaction conditions or requires the use of additional catalysts in order to generate sensitive electrophilic species for attack by a nucleophile. Here we present the synthesis of different indolic esters and amides from indolyl-3-carbonyl nitrile, without the requirement of anhydrous reaction conditions or catalysts. Additionally, we screened these compounds for potential in vitro antimalarial and anticancer activity, revealing 1H-indolyl-3-carboxylic acid 3-(indolyl-3-carboxamide)aminobenzyl ester to have moderate activity against both lines.
- Full Text: false
Cytotoxicity of lapachol, β-lapachone and related synthetic 1, 4-naphthoquinones against oesophageal cancer cells:
- Sunassee, Suthananda N, Veale, Clinton G L, Shunmoogam-Gounden, Nelusha, Osoniyi, Omalaja, Hendricks, Denver T, Caira, Mino R, de la Mare, Jo-Anne, Edkins, Adrienne L, Pinto, Antônio V, da Silva Junior, Eufrânio N, Davies-Coleman, Michael T
- Authors: Sunassee, Suthananda N , Veale, Clinton G L , Shunmoogam-Gounden, Nelusha , Osoniyi, Omalaja , Hendricks, Denver T , Caira, Mino R , de la Mare, Jo-Anne , Edkins, Adrienne L , Pinto, Antônio V , da Silva Junior, Eufrânio N , Davies-Coleman, Michael T
- Date: 2013
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/165207 , vital:41218 , DOI: 10.1016/j.ejmech.2012.12.048
- Description: Naphthoquinones have been found to have a wide range of biological activities, including cytotoxicity to cancer cells. The secondary metabolites lapachol, α- and β-lapachone and a series of 25 related synthetic 1,4-naphthoquinones were screened against the oesophageal cancer cell line (WHCO1). Most of the compounds exhibited enhanced cytotoxicity (IC50 1.6–11.7 μM) compared to the current drug of choice cisplatin (IC50 = 16.5 μM).
- Full Text:
- Authors: Sunassee, Suthananda N , Veale, Clinton G L , Shunmoogam-Gounden, Nelusha , Osoniyi, Omalaja , Hendricks, Denver T , Caira, Mino R , de la Mare, Jo-Anne , Edkins, Adrienne L , Pinto, Antônio V , da Silva Junior, Eufrânio N , Davies-Coleman, Michael T
- Date: 2013
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/165207 , vital:41218 , DOI: 10.1016/j.ejmech.2012.12.048
- Description: Naphthoquinones have been found to have a wide range of biological activities, including cytotoxicity to cancer cells. The secondary metabolites lapachol, α- and β-lapachone and a series of 25 related synthetic 1,4-naphthoquinones were screened against the oesophageal cancer cell line (WHCO1). Most of the compounds exhibited enhanced cytotoxicity (IC50 1.6–11.7 μM) compared to the current drug of choice cisplatin (IC50 = 16.5 μM).
- Full Text:
Expanding the SAR of Nontoxic Antiplasmodial Indolyl-3-ethanone Ethers and Thioethers.
- Lunga, Mayibongwe J, Chisango, Ruramai Lissa, Weyers, Carli, Isaacs, Michelle, Taylor, Dale, Edkins, Adrienne L, Khanye, Setshaba D, Hoppe, Heinrich C, Veale, Clinton G L
- Authors: Lunga, Mayibongwe J , Chisango, Ruramai Lissa , Weyers, Carli , Isaacs, Michelle , Taylor, Dale , Edkins, Adrienne L , Khanye, Setshaba D , Hoppe, Heinrich C , Veale, Clinton G L
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/122908 , vital:35370 , https://doi.org/10.1002/cmdc.201800235
- Description: Despite major strides in reducing Plasmodium falciparum infections, this parasite still accounts for roughly half a million annual deaths. This problem is compounded by the decreased efficacy of artemisinin combination therapies. Therefore, the development and optimisation of novel antimalarial chemotypes is critical. In this study, we describe our strategic approach to optimise a class of previously reported antimalarials, resulting in the discovery of 1‐(5‐chloro‐1H‐indol‐3‐yl)‐2‐[(4‐cyanophenyl)thio]ethanone (13) and 1‐(5‐chloro‐1H‐indol‐3‐yl)‐2‐[(4‐nitrophenyl)thio]ethanone (14), whose activity was equipotent to that of chloroquine against the P. falciparum 3D7 strain. Furthermore, these compounds were found to be nontoxic to HeLa cells as well as being non‐haemolytic to uninfected red blood cells. Intriguingly, several of our most promising compounds were found to be less active against the isogenic NF54 strain, highlighting possible issues with long‐term dependability of malarial strains. Finally compound 14 displayed similar activity against both the NF54 and K1 strains, suggesting that it inhibits a pathway that is uncompromised by K1 resistance.
- Full Text:
- Authors: Lunga, Mayibongwe J , Chisango, Ruramai Lissa , Weyers, Carli , Isaacs, Michelle , Taylor, Dale , Edkins, Adrienne L , Khanye, Setshaba D , Hoppe, Heinrich C , Veale, Clinton G L
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/122908 , vital:35370 , https://doi.org/10.1002/cmdc.201800235
- Description: Despite major strides in reducing Plasmodium falciparum infections, this parasite still accounts for roughly half a million annual deaths. This problem is compounded by the decreased efficacy of artemisinin combination therapies. Therefore, the development and optimisation of novel antimalarial chemotypes is critical. In this study, we describe our strategic approach to optimise a class of previously reported antimalarials, resulting in the discovery of 1‐(5‐chloro‐1H‐indol‐3‐yl)‐2‐[(4‐cyanophenyl)thio]ethanone (13) and 1‐(5‐chloro‐1H‐indol‐3‐yl)‐2‐[(4‐nitrophenyl)thio]ethanone (14), whose activity was equipotent to that of chloroquine against the P. falciparum 3D7 strain. Furthermore, these compounds were found to be nontoxic to HeLa cells as well as being non‐haemolytic to uninfected red blood cells. Intriguingly, several of our most promising compounds were found to be less active against the isogenic NF54 strain, highlighting possible issues with long‐term dependability of malarial strains. Finally compound 14 displayed similar activity against both the NF54 and K1 strains, suggesting that it inhibits a pathway that is uncompromised by K1 resistance.
- Full Text:
- «
- ‹
- 1
- ›
- »