Additive multiple predator effects of two specialist paradiaptomid copepods towards larval mosquitoes
- Cuthbert, Ross N, Dalu, Tatenda, Wasserman, Ryan J, Weyl, Olaf L F, Froneman, P William, Callaghan, Amanda, Dick, Jaimie T A
- Authors: Cuthbert, Ross N , Dalu, Tatenda , Wasserman, Ryan J , Weyl, Olaf L F , Froneman, P William , Callaghan, Amanda , Dick, Jaimie T A
- Date: 2019
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/467137 , vital:76828 , https://doi.org/10.1016/j.limno.2019.125727
- Description: Interactions between multiple predators can profoundly affect prey risk, with implications for prey population stability and ecosystem functioning. In austral temporary wetlands, arid-area adapted specialist copepods are key predators for much of the hydroperiod. Limited autoecological information relating to species interactions negates understandings of trophic dynamics in these systems. In the present study, we examined multiple predator effects of two key predatory paradiaptomid copepods which often coexist in austral temporary wetlands, Lovenula raynerae Suárez-Morales, Wasserman and Dalu 2015 and Paradiaptomus lamellatus Sars, 1985. Predation rates towards larval mosquito prey across different water depths were quantified.
- Full Text:
- Date Issued: 2019
- Authors: Cuthbert, Ross N , Dalu, Tatenda , Wasserman, Ryan J , Weyl, Olaf L F , Froneman, P William , Callaghan, Amanda , Dick, Jaimie T A
- Date: 2019
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/467137 , vital:76828 , https://doi.org/10.1016/j.limno.2019.125727
- Description: Interactions between multiple predators can profoundly affect prey risk, with implications for prey population stability and ecosystem functioning. In austral temporary wetlands, arid-area adapted specialist copepods are key predators for much of the hydroperiod. Limited autoecological information relating to species interactions negates understandings of trophic dynamics in these systems. In the present study, we examined multiple predator effects of two key predatory paradiaptomid copepods which often coexist in austral temporary wetlands, Lovenula raynerae Suárez-Morales, Wasserman and Dalu 2015 and Paradiaptomus lamellatus Sars, 1985. Predation rates towards larval mosquito prey across different water depths were quantified.
- Full Text:
- Date Issued: 2019
An evaluation of the current extent and potential spread of Black Bass invasions in South Africa
- Khosa, Dumisani, Marr, Sean M, Wasserman, Ryan J, Zengeya, Tsungai A, Weyl, Olaf L F
- Authors: Khosa, Dumisani , Marr, Sean M , Wasserman, Ryan J , Zengeya, Tsungai A , Weyl, Olaf L F
- Date: 2019
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/103867 , vital:32317 , https://doi.org/10.1007/s10530-019-01930-0
- Description: Black Bass, a collective name for members of the centrarchid genus Micropterus, are native to North America, but have been introduced globally to enhance recreational angling. This study assessed the distribution of Micropterus salmoides, M. dolomieu and M. punctulatus in South Africa using both formal (survey-based) and informal (tournament data and social media) information sources. Analysis of the distribution data showed habitat bias between the data sources. Survey data from formal information sources were dominated by locality records in riverine environments while those derived from informal information sources focused more on lacustrine habitats. Presence data were used to develop niche models to identify suitable areas for their establishment. The predicted distribution range of M. salmoides revealed a broad suitability over most of South Africa, however, the Cape Fold Ecoregion and all coastal regions were most suitable for the establishment for both M. dolomieu and M. punctulatus. Flow accumulation and precipitation of coldest quarter were the most important environmental variables associated with the presence of all Black Bass species in South Africa. In addition, anthropogenic disturbance such as agricultural activities were associated with the presence of both Smallmouth Bass and Spotted Bass. An extensive area-based invasion debt was observed for all Micropterus spp. The potential for further spread of Black Bass in South Africa is of ecological concern because of their impact on native biota.
- Full Text:
- Date Issued: 2019
- Authors: Khosa, Dumisani , Marr, Sean M , Wasserman, Ryan J , Zengeya, Tsungai A , Weyl, Olaf L F
- Date: 2019
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/103867 , vital:32317 , https://doi.org/10.1007/s10530-019-01930-0
- Description: Black Bass, a collective name for members of the centrarchid genus Micropterus, are native to North America, but have been introduced globally to enhance recreational angling. This study assessed the distribution of Micropterus salmoides, M. dolomieu and M. punctulatus in South Africa using both formal (survey-based) and informal (tournament data and social media) information sources. Analysis of the distribution data showed habitat bias between the data sources. Survey data from formal information sources were dominated by locality records in riverine environments while those derived from informal information sources focused more on lacustrine habitats. Presence data were used to develop niche models to identify suitable areas for their establishment. The predicted distribution range of M. salmoides revealed a broad suitability over most of South Africa, however, the Cape Fold Ecoregion and all coastal regions were most suitable for the establishment for both M. dolomieu and M. punctulatus. Flow accumulation and precipitation of coldest quarter were the most important environmental variables associated with the presence of all Black Bass species in South Africa. In addition, anthropogenic disturbance such as agricultural activities were associated with the presence of both Smallmouth Bass and Spotted Bass. An extensive area-based invasion debt was observed for all Micropterus spp. The potential for further spread of Black Bass in South Africa is of ecological concern because of their impact on native biota.
- Full Text:
- Date Issued: 2019
Combined impacts of warming and salinisation on trophic interactions and mortality of a specialist ephemeral wetland predator
- Cuthbert, Ross N, Weyl, Olaf L F, Wasserman, Ryan J, Dick, Jaimie T A, Froneman, P William, Callaghan, Amanda, Dalu, Tatenda
- Authors: Cuthbert, Ross N , Weyl, Olaf L F , Wasserman, Ryan J , Dick, Jaimie T A , Froneman, P William , Callaghan, Amanda , Dalu, Tatenda
- Date: 2019
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/467160 , vital:76832 , https://doi.org/10.1111/fwb.13353
- Description: Wetlands are of enormous importance for biodiversity globally but are under increasing risk from multiple stressors driven by ongoing anthro-pogenic environmental change. As the trophic structure and dynamics of ephemeral wetlands are poorly understood, it is difficult to predict how these biodiverse ecosystems will be impacted by global change. In particular, warming and salinisation are projected to have profound im-pacts on these wetlands in future. The present study examined the combined effects of warming and salinisation on species interaction strengths and mortality rates for two ephemeral wetland species. Using an ephemeral pond specialist copepod, Lovenula raynerae Suárez‐Morales, Wasserman, and Dalu, (2015) as a model predator species, we applied a functional response approach to derive warming and salinisa-tion effects on trophic interactions with a prey species. Furthermore, the effects of a salinisation gradient on mortality rates of adult copepods were quantified.
- Full Text:
- Date Issued: 2019
- Authors: Cuthbert, Ross N , Weyl, Olaf L F , Wasserman, Ryan J , Dick, Jaimie T A , Froneman, P William , Callaghan, Amanda , Dalu, Tatenda
- Date: 2019
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/467160 , vital:76832 , https://doi.org/10.1111/fwb.13353
- Description: Wetlands are of enormous importance for biodiversity globally but are under increasing risk from multiple stressors driven by ongoing anthro-pogenic environmental change. As the trophic structure and dynamics of ephemeral wetlands are poorly understood, it is difficult to predict how these biodiverse ecosystems will be impacted by global change. In particular, warming and salinisation are projected to have profound im-pacts on these wetlands in future. The present study examined the combined effects of warming and salinisation on species interaction strengths and mortality rates for two ephemeral wetland species. Using an ephemeral pond specialist copepod, Lovenula raynerae Suárez‐Morales, Wasserman, and Dalu, (2015) as a model predator species, we applied a functional response approach to derive warming and salinisa-tion effects on trophic interactions with a prey species. Furthermore, the effects of a salinisation gradient on mortality rates of adult copepods were quantified.
- Full Text:
- Date Issued: 2019
Food web structure and trophic dynamics of a fish community in an ephemeral floodplain lake
- Peel, Richard A, Hill, Jaclyn M, Taylor, Geraldine C, Weyl, Olaf L F
- Authors: Peel, Richard A , Hill, Jaclyn M , Taylor, Geraldine C , Weyl, Olaf L F
- Date: 2019
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/444690 , vital:74260 , https://doi.org/10.3389/fenvs.2019.00192
- Description: In Africa, wetlands, such as shallow, ephemeral lakes provide ecosystem services, such as water purification, food supply, and flood control but are subject to dynamic flooding/drying cycles which vary in duration from years to decades. The stochastic nature of drying events subjects ephemeral lake fauna to persistent disturbance regimes, therefore understanding how biota respond to flooding and drying events is essential for their conservation and management. Primary production sources supporting consumer biomass in the shallow ephemeral Lake Liambezi (upper Zambezi Ecoregion), were investigated using stable isotope analysis, mixing models and stomach content analysis to investigate the following hypotheses: (1) algal primary production supports a higher consumer biomass than aquatic macrophytes; (2) the lake food chain is short, because the majority of fish fauna are detritivorous/herbivorous cichlids that are consumed by top predators; (3) fish community trophic structure will be similar between years; and (4) with short food chains and stochastic resource availability, there will be substantial competition for food among fish species.
- Full Text:
- Date Issued: 2019
- Authors: Peel, Richard A , Hill, Jaclyn M , Taylor, Geraldine C , Weyl, Olaf L F
- Date: 2019
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/444690 , vital:74260 , https://doi.org/10.3389/fenvs.2019.00192
- Description: In Africa, wetlands, such as shallow, ephemeral lakes provide ecosystem services, such as water purification, food supply, and flood control but are subject to dynamic flooding/drying cycles which vary in duration from years to decades. The stochastic nature of drying events subjects ephemeral lake fauna to persistent disturbance regimes, therefore understanding how biota respond to flooding and drying events is essential for their conservation and management. Primary production sources supporting consumer biomass in the shallow ephemeral Lake Liambezi (upper Zambezi Ecoregion), were investigated using stable isotope analysis, mixing models and stomach content analysis to investigate the following hypotheses: (1) algal primary production supports a higher consumer biomass than aquatic macrophytes; (2) the lake food chain is short, because the majority of fish fauna are detritivorous/herbivorous cichlids that are consumed by top predators; (3) fish community trophic structure will be similar between years; and (4) with short food chains and stochastic resource availability, there will be substantial competition for food among fish species.
- Full Text:
- Date Issued: 2019
Quantifying reproductive state and predator effects on copepod motility in ephemeral ecosystems
- Cuthbert, Ross N, Dalu, Tatenda, Wasserman, Ryan J, Dick, Jaimie T A, Callaghan, Amanda, Froneman, P William, Weyl, Olaf L F
- Authors: Cuthbert, Ross N , Dalu, Tatenda , Wasserman, Ryan J , Dick, Jaimie T A , Callaghan, Amanda , Froneman, P William , Weyl, Olaf L F
- Date: 2019
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/467171 , vital:76836 , https://doi.org/10.1016/j.jaridenv.2019.05.010
- Description: Ephemeral wetlands in arid environments are unique ecosystems with atypical trophic structuring, often dominated by invertebrate predation. Copepod behavioural traits and vulnerabilities to predation can vary substantially according to reproductive status. Gravid female copepods may be more vulnerable to predation due to reduced escape speeds or higher visibility to predators. Here, we quantify how reproductive status modulates horizontal motility rates of the predatory ephemeral pond specialist copepod Lovenula raynerae, and the responsiveness of the copepod to predator cues of the notonectid Anisops debilis. Males exhibited significantly higher motility rates than gravid female copepods, however chemical predator cues did not significantly influence activity rates in either sex. The lack of responsiveness to predator cues by specialist copepods in ephemeral wetlands may result from a lack of predation pressure in these systems, or due to time stress to reproduce during short hydroperiods. In turn, this could increase predation risk to copepods from externally-recruited top predators in ephemeral wetlands, and potentially contribute to the development of skewed sex ratios in favour of females.
- Full Text:
- Date Issued: 2019
- Authors: Cuthbert, Ross N , Dalu, Tatenda , Wasserman, Ryan J , Dick, Jaimie T A , Callaghan, Amanda , Froneman, P William , Weyl, Olaf L F
- Date: 2019
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/467171 , vital:76836 , https://doi.org/10.1016/j.jaridenv.2019.05.010
- Description: Ephemeral wetlands in arid environments are unique ecosystems with atypical trophic structuring, often dominated by invertebrate predation. Copepod behavioural traits and vulnerabilities to predation can vary substantially according to reproductive status. Gravid female copepods may be more vulnerable to predation due to reduced escape speeds or higher visibility to predators. Here, we quantify how reproductive status modulates horizontal motility rates of the predatory ephemeral pond specialist copepod Lovenula raynerae, and the responsiveness of the copepod to predator cues of the notonectid Anisops debilis. Males exhibited significantly higher motility rates than gravid female copepods, however chemical predator cues did not significantly influence activity rates in either sex. The lack of responsiveness to predator cues by specialist copepods in ephemeral wetlands may result from a lack of predation pressure in these systems, or due to time stress to reproduce during short hydroperiods. In turn, this could increase predation risk to copepods from externally-recruited top predators in ephemeral wetlands, and potentially contribute to the development of skewed sex ratios in favour of females.
- Full Text:
- Date Issued: 2019
Rapid recovery of macroinvertebrates in a South African stream treated with rotenone:
- Bellingan, Terence A, Hugo, Sanet, Woodford, Darragh J, Gouws, Jeanne, Villet, Martin H, Weyl, Olaf L F
- Authors: Bellingan, Terence A , Hugo, Sanet , Woodford, Darragh J , Gouws, Jeanne , Villet, Martin H , Weyl, Olaf L F
- Date: 2019
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/140751 , vital:37915 , DOI: 10.1007/s10750-019-3885-z
- Description: South Africa’s Cape Fold Ecoregion supports a unique freshwater fish assemblage with many endemics. To mitigate impacts of alien invasive fishes on this unique assemblage, nature conservation authority CapeNature used rotenone to remove smallmouth bass (Micropterus dolomieu) from the Rondegat River. We investigated whether the rotenone treatments had an adverse impact on the aquatic macroinvertebrate community over the long-term, the first study of its kind in Africa. We monitored macroinvertebrates within treated and untreated (control) sites on multiple sampling events for 2 years before and 2 years after two rotenone treatments. We analysed the difference in invertebrate abundance between treatment and control sites before and after treatment, using generalised linear mixed models with sampling event as a random factor to partition out natural fluctuations in abundances over time.
- Full Text:
- Date Issued: 2019
- Authors: Bellingan, Terence A , Hugo, Sanet , Woodford, Darragh J , Gouws, Jeanne , Villet, Martin H , Weyl, Olaf L F
- Date: 2019
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/140751 , vital:37915 , DOI: 10.1007/s10750-019-3885-z
- Description: South Africa’s Cape Fold Ecoregion supports a unique freshwater fish assemblage with many endemics. To mitigate impacts of alien invasive fishes on this unique assemblage, nature conservation authority CapeNature used rotenone to remove smallmouth bass (Micropterus dolomieu) from the Rondegat River. We investigated whether the rotenone treatments had an adverse impact on the aquatic macroinvertebrate community over the long-term, the first study of its kind in Africa. We monitored macroinvertebrates within treated and untreated (control) sites on multiple sampling events for 2 years before and 2 years after two rotenone treatments. We analysed the difference in invertebrate abundance between treatment and control sites before and after treatment, using generalised linear mixed models with sampling event as a random factor to partition out natural fluctuations in abundances over time.
- Full Text:
- Date Issued: 2019
Species succession and the development of a lacustrine fish community in an ephemeral lake
- Peel, Richard A, Hill, Jaclyn M, Taylor, Geraldine C, Tweddle, Denis, Weyl, Olaf L F
- Authors: Peel, Richard A , Hill, Jaclyn M , Taylor, Geraldine C , Tweddle, Denis , Weyl, Olaf L F
- Date: 2019
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/444704 , vital:74261 , https://doi.org/10.1111/jfb.14081
- Description: Here, we present a gillnet survey of Lake Liambezi a 370 km2 shallow ephemeral floodplain lake situated in north‐eastern Namibia, which is fed irregularly by the upper Zambezi and Kwando Rivers during years of high flooding. The lake dried up in 1985 and, with the exception of sporadic minor annual inundation events, remained dry until 2007. We describe the temporal succession of fish species over an 8 year period from initial inundation 2007 to maturation in 2014. The succession of the fish community did not follow the typical pattern of opportunistic strategists during colonisation, to periodic strategists that are eventually succeeded by equilibrium strategists. Instead, the evolution of the fish community was characterised by three distinct phases. The first phase involved the inundation and colonisation of the lake in 2007, followed by its decline until the floods that filled the lake in 2009. During this phase the lake was colonised by fishes from the adjacent upper Zambezi and Chobe River floodplains.
- Full Text:
- Date Issued: 2019
- Authors: Peel, Richard A , Hill, Jaclyn M , Taylor, Geraldine C , Tweddle, Denis , Weyl, Olaf L F
- Date: 2019
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/444704 , vital:74261 , https://doi.org/10.1111/jfb.14081
- Description: Here, we present a gillnet survey of Lake Liambezi a 370 km2 shallow ephemeral floodplain lake situated in north‐eastern Namibia, which is fed irregularly by the upper Zambezi and Kwando Rivers during years of high flooding. The lake dried up in 1985 and, with the exception of sporadic minor annual inundation events, remained dry until 2007. We describe the temporal succession of fish species over an 8 year period from initial inundation 2007 to maturation in 2014. The succession of the fish community did not follow the typical pattern of opportunistic strategists during colonisation, to periodic strategists that are eventually succeeded by equilibrium strategists. Instead, the evolution of the fish community was characterised by three distinct phases. The first phase involved the inundation and colonisation of the lake in 2007, followed by its decline until the floods that filled the lake in 2009. During this phase the lake was colonised by fishes from the adjacent upper Zambezi and Chobe River floodplains.
- Full Text:
- Date Issued: 2019
The diet and trophic ecology of non-native Micropterus salmoides in two South African impoundments
- Taylor, Geraldine C, Hill, Jaclyn M, Weyl, Olaf L F
- Authors: Taylor, Geraldine C , Hill, Jaclyn M , Weyl, Olaf L F
- Date: 2019
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/444718 , vital:74262 , https://doi.org/10.2989/16085914.2019.1612318
- Description: Largemouth bass Micropterus salmoides is a highly successful predator that preys on fish and invertebrates. Highly popular with anglers, it is one of the most introduced and invasive fish globally, with strong potential to alter ecosystem structure and functioning. A better understanding of the trophic dynamics of M. salmoides populations is critical for effective management of its ecological impacts in their invasive range. This study investigated the diets and dietary ontogenetic shifts of M. salmoides in two South African dams along with its trophic positioning relative to other fish community members, through stomach content and stable isotope analyses. Micropterus salmoides was a top predator in both dams. In the Mankazana Dam, it depended predominately on insect prey, demonstrating a generalised feeding strategy, with shifts to include increasing proportions of fish prey with increasing size. Contrastingly, in the Wriggleswade Dam, M. salmoides displayed no ontogenetic shifts and preferred Gilchristella aestuaria, likely indicating a shift to a predominantly fish-based diet at smaller sizes, in the presence of small pelagic fish prey. Overall, M. salmoides diet was opportunistic, likely associated with prey morphology and behaviour (associated with refuge availability) and therefore directly linked to prey abundance and availability, which consequently dictated feeding strategy.
- Full Text:
- Date Issued: 2019
- Authors: Taylor, Geraldine C , Hill, Jaclyn M , Weyl, Olaf L F
- Date: 2019
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/444718 , vital:74262 , https://doi.org/10.2989/16085914.2019.1612318
- Description: Largemouth bass Micropterus salmoides is a highly successful predator that preys on fish and invertebrates. Highly popular with anglers, it is one of the most introduced and invasive fish globally, with strong potential to alter ecosystem structure and functioning. A better understanding of the trophic dynamics of M. salmoides populations is critical for effective management of its ecological impacts in their invasive range. This study investigated the diets and dietary ontogenetic shifts of M. salmoides in two South African dams along with its trophic positioning relative to other fish community members, through stomach content and stable isotope analyses. Micropterus salmoides was a top predator in both dams. In the Mankazana Dam, it depended predominately on insect prey, demonstrating a generalised feeding strategy, with shifts to include increasing proportions of fish prey with increasing size. Contrastingly, in the Wriggleswade Dam, M. salmoides displayed no ontogenetic shifts and preferred Gilchristella aestuaria, likely indicating a shift to a predominantly fish-based diet at smaller sizes, in the presence of small pelagic fish prey. Overall, M. salmoides diet was opportunistic, likely associated with prey morphology and behaviour (associated with refuge availability) and therefore directly linked to prey abundance and availability, which consequently dictated feeding strategy.
- Full Text:
- Date Issued: 2019
- «
- ‹
- 1
- ›
- »