Life history strategy and population characteristics of an unexploited riverine cyprinid, Labeo capensis, in the largest impoundment in the Orange River Basin
- Winker, A Henning, Weyl, Olaf L F, Booth, Anthony J, Ellender, Bruce R
- Authors: Winker, A Henning , Weyl, Olaf L F , Booth, Anthony J , Ellender, Bruce R
- Date: 2012
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/124910 , vital:35709 , https://doi.10.3377/004.047.0124
- Description: Common carp (Cyprinus carpio) is one of the world’s most widely introduced and established freshwater fishes (Casal 2006). The species is considered to be one of the eight most invasive freshwater fishes (Lowe et al. 2000) and worldwide, it accounts for most of the records of successful establishments and adverse ecological effects (Casal 2006; Kulhanek et al. 2011). This invasive success suggests that feral C. carpio is equipped with a set of adaptable life history attributes that allow it to successfully colonise a wide range of habitats (Koehn 2004; Zambrano et al. 2006; Britton et al. 2007). Where feral C. carpio occurs in high densities, it is often perceived as an invasive pest species (Sivakumaran et al. 2003; Brown and Walker 2004; Koehn 2004) because it can have severe impacts on habitat heterogeneity and biodiversity by increasing water turbidity through its bottom feeding behaviour, increasing nutrient availability, decreasing benthic and macrophyte density and diversity, altering zooplankton assemblages and decreasing endemic fish abundance (Zambrano et al. 2001; Khan 2003; Kulhanek et al. 2011). Within south-east Australia, for example, C. carpio comprises the largest proportion of the ichthyobiomass in the continent’s largest river system – the Murray–Darling Basin (Gehrke et al. 1995). As a consequence, serious concerns about its threat to endemic freshwater species (Koehn 2004) have prompted several of the most recent investigations into its life history (e.g. Sivakumaran et al. 2003; Smith and Walker 2004; Brown et al. 2005). Other potential threats posed also include competition with indigenous species and the spread of diseases and parasites (Dudgeon et al. 2006). In South Africa, for example, Asian tapeworm Bothriocephalus acheilognathi is now widely distributed in seven river systems and has infected eight novel cyprinid hosts due to the translocation of infected by C. carpio from a centralized aquaculture facility (Stadtlander et al. 2011).
- Full Text:
- Date Issued: 2012
- Authors: Winker, A Henning , Weyl, Olaf L F , Booth, Anthony J , Ellender, Bruce R
- Date: 2012
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/124910 , vital:35709 , https://doi.10.3377/004.047.0124
- Description: Common carp (Cyprinus carpio) is one of the world’s most widely introduced and established freshwater fishes (Casal 2006). The species is considered to be one of the eight most invasive freshwater fishes (Lowe et al. 2000) and worldwide, it accounts for most of the records of successful establishments and adverse ecological effects (Casal 2006; Kulhanek et al. 2011). This invasive success suggests that feral C. carpio is equipped with a set of adaptable life history attributes that allow it to successfully colonise a wide range of habitats (Koehn 2004; Zambrano et al. 2006; Britton et al. 2007). Where feral C. carpio occurs in high densities, it is often perceived as an invasive pest species (Sivakumaran et al. 2003; Brown and Walker 2004; Koehn 2004) because it can have severe impacts on habitat heterogeneity and biodiversity by increasing water turbidity through its bottom feeding behaviour, increasing nutrient availability, decreasing benthic and macrophyte density and diversity, altering zooplankton assemblages and decreasing endemic fish abundance (Zambrano et al. 2001; Khan 2003; Kulhanek et al. 2011). Within south-east Australia, for example, C. carpio comprises the largest proportion of the ichthyobiomass in the continent’s largest river system – the Murray–Darling Basin (Gehrke et al. 1995). As a consequence, serious concerns about its threat to endemic freshwater species (Koehn 2004) have prompted several of the most recent investigations into its life history (e.g. Sivakumaran et al. 2003; Smith and Walker 2004; Brown et al. 2005). Other potential threats posed also include competition with indigenous species and the spread of diseases and parasites (Dudgeon et al. 2006). In South Africa, for example, Asian tapeworm Bothriocephalus acheilognathi is now widely distributed in seven river systems and has infected eight novel cyprinid hosts due to the translocation of infected by C. carpio from a centralized aquaculture facility (Stadtlander et al. 2011).
- Full Text:
- Date Issued: 2012
Life-history characteristics of an age-validated established invasive African sharptooth catfish, Clarias gariepinus, population in a warm–temperate African impoundment
- Wartenberg, Reece, Weyl, Olaf L F, Booth, Anthony J, Winker, A Henning
- Authors: Wartenberg, Reece , Weyl, Olaf L F , Booth, Anthony J , Winker, A Henning
- Date: 2012
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/124921 , vital:35710 , https://doi.10.3377/004.048.0225
- Description: African sharptooth catfish Clarias gariepinus (Burchell, 1822) is a widely distributed fish that has now invaded water bodies in South America, Eastern Europe, Asia and South Africa (Cambray 2003). In South Africa it is native as far south as the Orange-Vaal river system, but inter-basin water transfer schemes (IBWTs), illegal stocking by anglers and from aquaculture has resulted in the establishment of extralimital populations in almost all river systems (van Rensburg et al. 2011). Within the Eastern Cape Province, C. gariepinus has invaded the Great Fish and Sundays rivers through IBWTs, that connect the Orange River to the Great Fish River and then to the Sundays River system which flows directly into Darlington Dam (Kadye & Booth 2013a) (Fig. 1). Soon after the completion of the IBWTs sharptooth catfish were recorded in Grassridge Dam in 1976 (Laurenson & Hocutt 1985), and later from Darlington Dam in 1981 (Scott et al. 2006). Although Cambray & Jubb (1977) are of the opinion that the species was translocated prior to the IBWT connection, there is now a permanent corridor between the Orange River and its receiving river systems that can facilitate the continued introduction of non-native Orange River fishes and other aquatic biota.
- Full Text:
- Date Issued: 2012
- Authors: Wartenberg, Reece , Weyl, Olaf L F , Booth, Anthony J , Winker, A Henning
- Date: 2012
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/124921 , vital:35710 , https://doi.10.3377/004.048.0225
- Description: African sharptooth catfish Clarias gariepinus (Burchell, 1822) is a widely distributed fish that has now invaded water bodies in South America, Eastern Europe, Asia and South Africa (Cambray 2003). In South Africa it is native as far south as the Orange-Vaal river system, but inter-basin water transfer schemes (IBWTs), illegal stocking by anglers and from aquaculture has resulted in the establishment of extralimital populations in almost all river systems (van Rensburg et al. 2011). Within the Eastern Cape Province, C. gariepinus has invaded the Great Fish and Sundays rivers through IBWTs, that connect the Orange River to the Great Fish River and then to the Sundays River system which flows directly into Darlington Dam (Kadye & Booth 2013a) (Fig. 1). Soon after the completion of the IBWTs sharptooth catfish were recorded in Grassridge Dam in 1976 (Laurenson & Hocutt 1985), and later from Darlington Dam in 1981 (Scott et al. 2006). Although Cambray & Jubb (1977) are of the opinion that the species was translocated prior to the IBWT connection, there is now a permanent corridor between the Orange River and its receiving river systems that can facilitate the continued introduction of non-native Orange River fishes and other aquatic biota.
- Full Text:
- Date Issued: 2012
- «
- ‹
- 1
- ›
- »