Do thermal requirements of Dichrorampha odorata, a shoot-boring moth for the biological control of Chromolaena odorata, explain its failure to establish in South Africa?
- Nqayi, Slindile B, Zachariades, Costas, Coetzee, Julie A, Hill, Martin P, Chidawanyika, Frank, Uyi, Osariyekemwen O, McConnachie, Andrew J
- Authors: Nqayi, Slindile B , Zachariades, Costas , Coetzee, Julie A , Hill, Martin P , Chidawanyika, Frank , Uyi, Osariyekemwen O , McConnachie, Andrew J
- Date: 2023
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/416851 , vital:71391 , xlink:href="https://hdl.handle.net/10520/ejc-ento_v31_n1_a14"
- Description: Chromolaena odorata (L.) RM King and H Rob. (Asteraceae) has been subject to a biological control programme in South Africa for over three decades. A shoot-tip boring moth, Dichrorampha odorata Brown and Zachariades (Lepidoptera: Tortricidae), originating from Jamaica, was released as a biological control agent in 2013 but despite the release of substantial numbers of the insect, it has not established a permanent field population. Because climate incompatibility is a major constraint for classical biological control of invasive plants, and based on the differences in climate between Jamaica and South Africa and field observations at release sites, aspects of the thermal physiology of D. odorata were investigated to elucidate reasons for its failure to establish. Developmental time decreased with increasing temperatures ranging from 20 °C to 30 °C, with incomplete development for immature stages at 18 °C and 32 °C. The developmental threshold, t, was calculated as 8.45 °C with 872.4 degree-days required to complete development (K). A maximum of 6.5 generations per year was projected for D. odorata in South Africa, with the heavily infested eastern region of the country being the most eco-climatically suitable for establishment. The lower lethal temperature (LLT50) of larvae and adults was –4.5 and 1.8 °C, respectively. The upper lethal temperature (ULT50) for larvae was 39.6 °C whilst that of adults was 41.0 °C. Larvae thus had better cold tolerance compared to adults whereas adults had better heat tolerance compared to larvae. The critical thermal (CT) limits for adults were 3.4 ± 0.07 to 43.7 ± 0.12 °C. Acclimation at 20 °C for 7 days resulted in increased cold and heat tolerance with a CTmin and CTmax of 1.9 ± 0.06 and 44.4 ± 0.07 °C respectively, compared to the relative control, acclimated at 25 °C. Acclimation at 30 °C improved neither cold (CTmin: 5.9 ± 0.08 °C) nor heat tolerance (CTmax: 42.9 ± 0.10 °C). These results suggest that thermal requirements fall within field temperatures and are thus not the main constraining factor leading to poor establishment of D. odorata in South Africa.
- Full Text:
- Date Issued: 2023
- Authors: Nqayi, Slindile B , Zachariades, Costas , Coetzee, Julie A , Hill, Martin P , Chidawanyika, Frank , Uyi, Osariyekemwen O , McConnachie, Andrew J
- Date: 2023
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/416851 , vital:71391 , xlink:href="https://hdl.handle.net/10520/ejc-ento_v31_n1_a14"
- Description: Chromolaena odorata (L.) RM King and H Rob. (Asteraceae) has been subject to a biological control programme in South Africa for over three decades. A shoot-tip boring moth, Dichrorampha odorata Brown and Zachariades (Lepidoptera: Tortricidae), originating from Jamaica, was released as a biological control agent in 2013 but despite the release of substantial numbers of the insect, it has not established a permanent field population. Because climate incompatibility is a major constraint for classical biological control of invasive plants, and based on the differences in climate between Jamaica and South Africa and field observations at release sites, aspects of the thermal physiology of D. odorata were investigated to elucidate reasons for its failure to establish. Developmental time decreased with increasing temperatures ranging from 20 °C to 30 °C, with incomplete development for immature stages at 18 °C and 32 °C. The developmental threshold, t, was calculated as 8.45 °C with 872.4 degree-days required to complete development (K). A maximum of 6.5 generations per year was projected for D. odorata in South Africa, with the heavily infested eastern region of the country being the most eco-climatically suitable for establishment. The lower lethal temperature (LLT50) of larvae and adults was –4.5 and 1.8 °C, respectively. The upper lethal temperature (ULT50) for larvae was 39.6 °C whilst that of adults was 41.0 °C. Larvae thus had better cold tolerance compared to adults whereas adults had better heat tolerance compared to larvae. The critical thermal (CT) limits for adults were 3.4 ± 0.07 to 43.7 ± 0.12 °C. Acclimation at 20 °C for 7 days resulted in increased cold and heat tolerance with a CTmin and CTmax of 1.9 ± 0.06 and 44.4 ± 0.07 °C respectively, compared to the relative control, acclimated at 25 °C. Acclimation at 30 °C improved neither cold (CTmin: 5.9 ± 0.08 °C) nor heat tolerance (CTmax: 42.9 ± 0.10 °C). These results suggest that thermal requirements fall within field temperatures and are thus not the main constraining factor leading to poor establishment of D. odorata in South Africa.
- Full Text:
- Date Issued: 2023
The role of mass-rearing in weed biological control projects in South Africa
- Hill, Martin P, Conlong, Desmond, Zachariades, Costas, Coetzee, Julie A, Paterson, Iain D, Miller, Benjamin E, Foxcroft, Llewellyn, van der Westhuizen, L
- Authors: Hill, Martin P , Conlong, Desmond , Zachariades, Costas , Coetzee, Julie A , Paterson, Iain D , Miller, Benjamin E , Foxcroft, Llewellyn , van der Westhuizen, L
- Date: 2021
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/407094 , vital:70335 , xlink:href="https://hdl.handle.net/10520/ejc-ento_v29_n3_a22"
- Description: It has been documented that the continual release of high numbers of biological control (biocontrol) agents for weeds increases the likelihood of agent establishment and has been shown to reduce the time between the first release and subsequent control of the target weed. Here we review the mass-rearing activities for weed biocontrol agents in South Africa between 2011 and 2020. Some 4.7 million individual insects from 40 species of biocontrol agent have been released on 31 weed species at over 2000 sites throughout South Africa during the last decade. These insects were produced at mass-rearing facilities at eight research institutions, five schools and 10 Non-Governmental Organizations. These mass-rearing activities have created employment for 41 fulltime, fixed contract staff, of which 11 are people living with physical disabilities. To improve the uptake of mass-rearing through community engagement, appropriate protocols are required to ensure that agents are produced in high numbers to suppress invasive alien plant populations in South Africa.
- Full Text:
- Date Issued: 2021
- Authors: Hill, Martin P , Conlong, Desmond , Zachariades, Costas , Coetzee, Julie A , Paterson, Iain D , Miller, Benjamin E , Foxcroft, Llewellyn , van der Westhuizen, L
- Date: 2021
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/407094 , vital:70335 , xlink:href="https://hdl.handle.net/10520/ejc-ento_v29_n3_a22"
- Description: It has been documented that the continual release of high numbers of biological control (biocontrol) agents for weeds increases the likelihood of agent establishment and has been shown to reduce the time between the first release and subsequent control of the target weed. Here we review the mass-rearing activities for weed biocontrol agents in South Africa between 2011 and 2020. Some 4.7 million individual insects from 40 species of biocontrol agent have been released on 31 weed species at over 2000 sites throughout South Africa during the last decade. These insects were produced at mass-rearing facilities at eight research institutions, five schools and 10 Non-Governmental Organizations. These mass-rearing activities have created employment for 41 fulltime, fixed contract staff, of which 11 are people living with physical disabilities. To improve the uptake of mass-rearing through community engagement, appropriate protocols are required to ensure that agents are produced in high numbers to suppress invasive alien plant populations in South Africa.
- Full Text:
- Date Issued: 2021
More than a century of biological control against invasive alien plants in South Africa: a synoptic view of what has been accomplished
- Hill, Martin P, Moran, V Clifford, Hoffmann, John H, Neser, Stefan, Zimmermann, Helmuth G, Simelane, David O, Klein, Hildegard, Zachariades, Costas, Wood, Alan R, Byrne, Marcus J, Paterson, Iain D, Martin, Grant D, Coetzee, Julie A
- Authors: Hill, Martin P , Moran, V Clifford , Hoffmann, John H , Neser, Stefan , Zimmermann, Helmuth G , Simelane, David O , Klein, Hildegard , Zachariades, Costas , Wood, Alan R , Byrne, Marcus J , Paterson, Iain D , Martin, Grant D , Coetzee, Julie A
- Date: 2020
- Language: English
- Type: text , book
- Identifier: http://hdl.handle.net/10962/176260 , vital:42679 , ISBN 978-3-030-32394-3 , 10.1007/978-3-030-32394-3
- Description: Invasive alien plant species negatively affect agricultural production, degrade conservation areas, reduce water supplies, and increase the intensity of wild fires. Since 1913, biological control agents ie plant-feeding insects, mites, and fungal pathogens, have been deployed in South Africa to supplement other management practices (herbicides and mechanical controls) used against these invasive plant species. We do not describe the biological control agent species.
- Full Text: false
- Date Issued: 2020
- Authors: Hill, Martin P , Moran, V Clifford , Hoffmann, John H , Neser, Stefan , Zimmermann, Helmuth G , Simelane, David O , Klein, Hildegard , Zachariades, Costas , Wood, Alan R , Byrne, Marcus J , Paterson, Iain D , Martin, Grant D , Coetzee, Julie A
- Date: 2020
- Language: English
- Type: text , book
- Identifier: http://hdl.handle.net/10962/176260 , vital:42679 , ISBN 978-3-030-32394-3 , 10.1007/978-3-030-32394-3
- Description: Invasive alien plant species negatively affect agricultural production, degrade conservation areas, reduce water supplies, and increase the intensity of wild fires. Since 1913, biological control agents ie plant-feeding insects, mites, and fungal pathogens, have been deployed in South Africa to supplement other management practices (herbicides and mechanical controls) used against these invasive plant species. We do not describe the biological control agent species.
- Full Text: false
- Date Issued: 2020
- «
- ‹
- 1
- ›
- »