Coastal topography drives genetic structure in marine mussels
- Nicastro, Katy R, Zardi, Gerardo I, McQuaid, Christopher D, Teske, Peter R, Barker, Nigel P
- Authors: Nicastro, Katy R , Zardi, Gerardo I , McQuaid, Christopher D , Teske, Peter R , Barker, Nigel P
- Date: 2008
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/445634 , vital:74409 , https://doi.org/10.3354/meps07607
- Description: Understanding population connectivity is fundamental to ecology, and, for sedentary organisms, connectivity is achieved through larval dispersal. We tested whether coastal topography influences genetic structure in Perna perna mussels by comparing populations inside bays and on the open coast. Higher hydrodynamic stress on the open coast produces higher mortality and thus genetic turnover. Populations on the open coast had fewer private haplotypes and less genetic endemism than those inside bays. Gene flow analysis showed that bays act as source populations, with greater migration rates out of bays than into them. Differences in genetic structure on scales of 10s of kilometres show that coastal configuration strongly affects selection, larval dispersal and haplotype diversity.
- Full Text: false
- Date Issued: 2008
- Authors: Nicastro, Katy R , Zardi, Gerardo I , McQuaid, Christopher D , Teske, Peter R , Barker, Nigel P
- Date: 2008
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/445634 , vital:74409 , https://doi.org/10.3354/meps07607
- Description: Understanding population connectivity is fundamental to ecology, and, for sedentary organisms, connectivity is achieved through larval dispersal. We tested whether coastal topography influences genetic structure in Perna perna mussels by comparing populations inside bays and on the open coast. Higher hydrodynamic stress on the open coast produces higher mortality and thus genetic turnover. Populations on the open coast had fewer private haplotypes and less genetic endemism than those inside bays. Gene flow analysis showed that bays act as source populations, with greater migration rates out of bays than into them. Differences in genetic structure on scales of 10s of kilometres show that coastal configuration strongly affects selection, larval dispersal and haplotype diversity.
- Full Text: false
- Date Issued: 2008
Implications of life history for genetic structure and migration rates of southern African coastal invertebrates: planktonic, abbreviated and direct development
- Teske, Peter R, Papadopoulos, Isabelle, Zardi, Gerardo I, McQuaid, Christopher D, Edkins, M T, Griffiths, C L, Barker, Nigel P
- Authors: Teske, Peter R , Papadopoulos, Isabelle , Zardi, Gerardo I , McQuaid, Christopher D , Edkins, M T , Griffiths, C L , Barker, Nigel P
- Date: 2007
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/445447 , vital:74388 , https://doi.org/10.1007/s00227-007-0724-y
- Description: The amount of genetic structure in marine invertebrates is often thought to be negatively correlated with larval duration. However, larval retention may increase genetic structure in species with long-lived planktonic larvae, and rafting provides a means of dispersal for species that lack a larval dispersal phase. We compared genetic structure, demographic histories and levels of gene flow of regional lineages (in most cases defined by biogeographic region) of five southern African coastal invertebrates with three main types of larval development: (1) dispersal by long-lived planktonic larvae (mudprawn Upogebia africana and brown mussel Perna perna), (2) abbreviated larval development (crown crab Hymenosoma orbiculare) and (3) direct development (estuarine isopod Exosphaeroma hylecoetes and estuarine cumacean Iphinoe truncata). We hypothesized that H. orbiculare, having abbreviated larval development, would employ a strategy of larval retention, resulting in genetic structure comparable to that of the direct developers rather than the planktonic dispersers.
- Full Text:
- Date Issued: 2007
- Authors: Teske, Peter R , Papadopoulos, Isabelle , Zardi, Gerardo I , McQuaid, Christopher D , Edkins, M T , Griffiths, C L , Barker, Nigel P
- Date: 2007
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/445447 , vital:74388 , https://doi.org/10.1007/s00227-007-0724-y
- Description: The amount of genetic structure in marine invertebrates is often thought to be negatively correlated with larval duration. However, larval retention may increase genetic structure in species with long-lived planktonic larvae, and rafting provides a means of dispersal for species that lack a larval dispersal phase. We compared genetic structure, demographic histories and levels of gene flow of regional lineages (in most cases defined by biogeographic region) of five southern African coastal invertebrates with three main types of larval development: (1) dispersal by long-lived planktonic larvae (mudprawn Upogebia africana and brown mussel Perna perna), (2) abbreviated larval development (crown crab Hymenosoma orbiculare) and (3) direct development (estuarine isopod Exosphaeroma hylecoetes and estuarine cumacean Iphinoe truncata). We hypothesized that H. orbiculare, having abbreviated larval development, would employ a strategy of larval retention, resulting in genetic structure comparable to that of the direct developers rather than the planktonic dispersers.
- Full Text:
- Date Issued: 2007
Unexpected genetic structure of mussel populations in South Africa: indigenous Perna perna and invasive Mytilus galloprovincialis
- Zardi, Gerardo I, McQuaid, Christopher D, Teske, Peter R, Barker, Nigel P
- Authors: Zardi, Gerardo I , McQuaid, Christopher D , Teske, Peter R , Barker, Nigel P
- Date: 2007
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/445564 , vital:74401 , doi:10.3354/meps337135
- Description: Genetic structure of sedentary marine organisms with planktonic larvae can be influenced by oceanographic transport, larval behaviour and local selection. We analysed the population genetic structure (based on mtDNA) of the invasive mussel Mytilus galloprovincialis and the indigenous mussel Perna perna along the southern African coastline. Low genetic divergence of M. galloprovincialis confirms its recent arrival in South Africa. In contrast, the genetic structure of P. perna revealed strong divergence on the south-east coast, forming a western and an eastern lineage. The distribution of the 2 lineages is extraordinary. They overlap for ca. 200 km on the south-east coast, and the western lineage includes animals occurring on either side of a 1000 km break in distribution across the Benguela upwelling system. In cluster analyses, animals on the south coast grouped with others 1000s of km to the west, rather than with those only 200 km to the east.
- Full Text: false
- Date Issued: 2007
- Authors: Zardi, Gerardo I , McQuaid, Christopher D , Teske, Peter R , Barker, Nigel P
- Date: 2007
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/445564 , vital:74401 , doi:10.3354/meps337135
- Description: Genetic structure of sedentary marine organisms with planktonic larvae can be influenced by oceanographic transport, larval behaviour and local selection. We analysed the population genetic structure (based on mtDNA) of the invasive mussel Mytilus galloprovincialis and the indigenous mussel Perna perna along the southern African coastline. Low genetic divergence of M. galloprovincialis confirms its recent arrival in South Africa. In contrast, the genetic structure of P. perna revealed strong divergence on the south-east coast, forming a western and an eastern lineage. The distribution of the 2 lineages is extraordinary. They overlap for ca. 200 km on the south-east coast, and the western lineage includes animals occurring on either side of a 1000 km break in distribution across the Benguela upwelling system. In cluster analyses, animals on the south coast grouped with others 1000s of km to the west, rather than with those only 200 km to the east.
- Full Text: false
- Date Issued: 2007
- «
- ‹
- 1
- ›
- »