Effect of salinity on oxygen consumption and growth of juvenile white steenbras, litohognathus lithognathus
- Authors: Kandjou, Kaunahama
- Date: 2008
- Subjects: Lithognathus -- Growth , Salinity
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: vital:5275 , http://hdl.handle.net/10962/d1005119 , Lithognathus -- Growth , Salinity
- Description: A stress-induced increase in metabolic rate of fish consumes energy within the metabolic scope of a fish that could otherwise be used for such functions as growth and reproduction. By estimating the degree of the metabolic response under given salinity levels and sudden changes thereof, it could be tested whether growth under given culture conditions could be predicted. Using intermittent respirometers, this study investigated the metabolic response of juvenile Lithognathus lithognathus following gradual acclimation to 5, 25 and 35‰ and, as a result of abrupt change from 35‰ to 5‰ or from 35‰ to 25‰ at 20˚C. The main aim of the study was to establish whether the magnitude of such responses could be used to predict growth of juvenile L. lithognathus under culture conditions. Hence, in addition to the respirometry study, two growth studies were conducted at 5, 10, 25 and 35‰ salinities. The baseline metabolic rates of juvenile L. lithognathus were also determined. Oxygen consumption measurements over 24-hours showed that most fish exhibited a diurnal peak in metabolic rates. The standard and active metabolic rates calculated from juvenile L. lithognathus with a diurnal peak in oxygen consumption were 0.06±0.001mgO₂g⁻¹h⁻¹ (mean±SEM, n = 5), and 0.11±0.01mg O₂g⁻¹h⁻¹, respectively. The standard and active metabolic rates of juvenile L lithognathus showing a nocturnal peak in metabolic activities were 0.04±0.001mgO₂g-1h-1 (n = 1), and 0.12±0.003 mg O₂g⁻¹ h⁻¹, respectively. Routine metabolic rate of these fish calculated over a 3-h measurement period was 0.09±0.005mgO₂g⁻¹h⁻¹ (n = 6). Juvenile L. lithognathus showed a relationship between metabolic rate (mo₂) and body weight (W) following the equation: mo₂ = 0.62 W⁻°·⁵³.
- Full Text:
- Date Issued: 2008
- Authors: Kandjou, Kaunahama
- Date: 2008
- Subjects: Lithognathus -- Growth , Salinity
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: vital:5275 , http://hdl.handle.net/10962/d1005119 , Lithognathus -- Growth , Salinity
- Description: A stress-induced increase in metabolic rate of fish consumes energy within the metabolic scope of a fish that could otherwise be used for such functions as growth and reproduction. By estimating the degree of the metabolic response under given salinity levels and sudden changes thereof, it could be tested whether growth under given culture conditions could be predicted. Using intermittent respirometers, this study investigated the metabolic response of juvenile Lithognathus lithognathus following gradual acclimation to 5, 25 and 35‰ and, as a result of abrupt change from 35‰ to 5‰ or from 35‰ to 25‰ at 20˚C. The main aim of the study was to establish whether the magnitude of such responses could be used to predict growth of juvenile L. lithognathus under culture conditions. Hence, in addition to the respirometry study, two growth studies were conducted at 5, 10, 25 and 35‰ salinities. The baseline metabolic rates of juvenile L. lithognathus were also determined. Oxygen consumption measurements over 24-hours showed that most fish exhibited a diurnal peak in metabolic rates. The standard and active metabolic rates calculated from juvenile L. lithognathus with a diurnal peak in oxygen consumption were 0.06±0.001mgO₂g⁻¹h⁻¹ (mean±SEM, n = 5), and 0.11±0.01mg O₂g⁻¹h⁻¹, respectively. The standard and active metabolic rates of juvenile L lithognathus showing a nocturnal peak in metabolic activities were 0.04±0.001mgO₂g-1h-1 (n = 1), and 0.12±0.003 mg O₂g⁻¹ h⁻¹, respectively. Routine metabolic rate of these fish calculated over a 3-h measurement period was 0.09±0.005mgO₂g⁻¹h⁻¹ (n = 6). Juvenile L. lithognathus showed a relationship between metabolic rate (mo₂) and body weight (W) following the equation: mo₂ = 0.62 W⁻°·⁵³.
- Full Text:
- Date Issued: 2008
The cryopreservation potential and ultrastructure of Agulhas sole Austroglossus pectoralis spermatozoa
- Authors: Markovina, Michael Zeljan
- Date: 2008
- Subjects: Spermatozoa , Spermatozoa -- Cryopreservation , Aquaculture , Fishes -- Breeding , Soleidae , Flatfishes , Agulhas Current (South Africa)
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: vital:5251 , http://hdl.handle.net/10962/d1005094 , Spermatozoa , Spermatozoa -- Cryopreservation , Aquaculture , Fishes -- Breeding , Soleidae , Flatfishes , Agulhas Current (South Africa)
- Description: As the estimated market demand for the Agulhas sole Austroglossus pectoralis exceeds the annual catch from trawlers, this species is a potential aquaculture candidate. Broodstock conditioning and gamete preservation is part of research and development aiming at establishing a breeding protocol for a new aquaculture species. Based on a literature review of the morphology of pleuronectiform spermatozoa, this study was designed firstly, to contribute to the field of spermatozoan morphology by describing the ultrastructure of A. pectoralis spermatozoa. This was followed by an experiment to cryopreserve mature spermatozoa to provide baseline data for future studies on this and related species. The testis of A. pectoralis was a paired structure encased in a membrane, the tunica albuginea. The primary testis was located on the dorsal surface of the rib cage and the secondary testis on the ventral side. The testis was of an unrestricted spermatogonial type, based upon observations of spermatogonia along the entire length of the lobule. Mature spermatozoa of A. pectoralis had an acrosome-free ovoid head 1.68 ± 1.6μm in length and 1.7 ± 1.6μm in diameter, a short mid-piece of 0.5 ± 0.1μm in length, containing 7 irregularly shaped mitochondria forming a ring-like structure at the base of the nucleus. The flagellae were 47.4 ± 4.8μm in length, most with two plasma membrane lateral fin-like projections. However, some flagellae had either zero or three lateral fin projections. Cross-sections of the flagellae showed an axenome with a 9+2 microtubule configuration. The proximal and distal centriols were coaxal, situated deep within the nuclear fossa. The structure of A. pectoralis spermatozoa conformed to the type 1 ect-aquasperm, also found in externally fertilizing species. This type has been suggested to be the plesiomorphic form in Neopterigians. Finally, this study contributed to a cryopreservation protocol for A. pectoralis spermatozoa by testing the two cryoprotectants dimethyl sulphoxide (DMSO) and glycerol. Glycerol, at a concentration of 10%, offered better cryoprotection than DMSO. This was established using flow cytometry analysis of post-thaw nuclear membrane integrity after 64 days of storage in liquid nitrogen. The toxicity of DMSO to isolated cellular proteins may have resulted in DMSO-treated sperm having the highest percent (35.2% ± 3.2%) of non-viable cells compared with 23.0% ± 2.5% and 27.8% ± 3.4% for glycerol and the control, respectively. The presence of sucrose in the Modified Mounib Medium extender solution may explain why 45.5% ± 5% of the sperm cells were potentially viable in the control treatment. Initially, the white margined sole Dagatichthys marginatus (Soleidae) was selected as the most suitable candidate for flatfish aquaculture in South Africa. Thus, the aim of this study was to investigate the cryogenic potential and ultrastructure of D. marginatus spermatozoa. However, due to a skewed sex ratio, there were not enough males available to study this species. A skewed sex ratio is common amongst soleids, thus, the need to develop effective cryopreservation methods and to develop an understanding of sperm morphology so that the best time for cryopreservation can be chosen. In conclusion, this first description of spermatozan morphology of A. pectoralis contributed to our understanding of soleid sperm ultrastructure. In addition, a comparison of testis appearance between fish sampled just prior to spawning season and fish with mature sperm provided information on the spawning season of this species. The findings from the cryopreservation experiment suggested that glycerol was a feasible cryoprotectant for this species when sperm was prepared under field conditions.
- Full Text:
- Date Issued: 2008
- Authors: Markovina, Michael Zeljan
- Date: 2008
- Subjects: Spermatozoa , Spermatozoa -- Cryopreservation , Aquaculture , Fishes -- Breeding , Soleidae , Flatfishes , Agulhas Current (South Africa)
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: vital:5251 , http://hdl.handle.net/10962/d1005094 , Spermatozoa , Spermatozoa -- Cryopreservation , Aquaculture , Fishes -- Breeding , Soleidae , Flatfishes , Agulhas Current (South Africa)
- Description: As the estimated market demand for the Agulhas sole Austroglossus pectoralis exceeds the annual catch from trawlers, this species is a potential aquaculture candidate. Broodstock conditioning and gamete preservation is part of research and development aiming at establishing a breeding protocol for a new aquaculture species. Based on a literature review of the morphology of pleuronectiform spermatozoa, this study was designed firstly, to contribute to the field of spermatozoan morphology by describing the ultrastructure of A. pectoralis spermatozoa. This was followed by an experiment to cryopreserve mature spermatozoa to provide baseline data for future studies on this and related species. The testis of A. pectoralis was a paired structure encased in a membrane, the tunica albuginea. The primary testis was located on the dorsal surface of the rib cage and the secondary testis on the ventral side. The testis was of an unrestricted spermatogonial type, based upon observations of spermatogonia along the entire length of the lobule. Mature spermatozoa of A. pectoralis had an acrosome-free ovoid head 1.68 ± 1.6μm in length and 1.7 ± 1.6μm in diameter, a short mid-piece of 0.5 ± 0.1μm in length, containing 7 irregularly shaped mitochondria forming a ring-like structure at the base of the nucleus. The flagellae were 47.4 ± 4.8μm in length, most with two plasma membrane lateral fin-like projections. However, some flagellae had either zero or three lateral fin projections. Cross-sections of the flagellae showed an axenome with a 9+2 microtubule configuration. The proximal and distal centriols were coaxal, situated deep within the nuclear fossa. The structure of A. pectoralis spermatozoa conformed to the type 1 ect-aquasperm, also found in externally fertilizing species. This type has been suggested to be the plesiomorphic form in Neopterigians. Finally, this study contributed to a cryopreservation protocol for A. pectoralis spermatozoa by testing the two cryoprotectants dimethyl sulphoxide (DMSO) and glycerol. Glycerol, at a concentration of 10%, offered better cryoprotection than DMSO. This was established using flow cytometry analysis of post-thaw nuclear membrane integrity after 64 days of storage in liquid nitrogen. The toxicity of DMSO to isolated cellular proteins may have resulted in DMSO-treated sperm having the highest percent (35.2% ± 3.2%) of non-viable cells compared with 23.0% ± 2.5% and 27.8% ± 3.4% for glycerol and the control, respectively. The presence of sucrose in the Modified Mounib Medium extender solution may explain why 45.5% ± 5% of the sperm cells were potentially viable in the control treatment. Initially, the white margined sole Dagatichthys marginatus (Soleidae) was selected as the most suitable candidate for flatfish aquaculture in South Africa. Thus, the aim of this study was to investigate the cryogenic potential and ultrastructure of D. marginatus spermatozoa. However, due to a skewed sex ratio, there were not enough males available to study this species. A skewed sex ratio is common amongst soleids, thus, the need to develop effective cryopreservation methods and to develop an understanding of sperm morphology so that the best time for cryopreservation can be chosen. In conclusion, this first description of spermatozan morphology of A. pectoralis contributed to our understanding of soleid sperm ultrastructure. In addition, a comparison of testis appearance between fish sampled just prior to spawning season and fish with mature sperm provided information on the spawning season of this species. The findings from the cryopreservation experiment suggested that glycerol was a feasible cryoprotectant for this species when sperm was prepared under field conditions.
- Full Text:
- Date Issued: 2008
Toward the development of a rearing protocol for juvenile dusky kob, Argyrosomus japonicus (Pisces: Sciaenidae)
- Authors: Collett, Paul David
- Date: 2008
- Subjects: Argyrosomus -- South Africa , Mariculture -- South Africa , Fishes -- Nutrition -- South Africa , Fishes -- Growth -- South Africa , Fish trade -- South Africa , Sciaenidae
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: vital:5325 , http://hdl.handle.net/10962/d1005171 , Argyrosomus -- South Africa , Mariculture -- South Africa , Fishes -- Nutrition -- South Africa , Fishes -- Growth -- South Africa , Fish trade -- South Africa , Sciaenidae
- Description: The South African mariculture industry is developing the rearing technology of indigenous fish species. Dusky kob (Argyrosomus japonicus) has high-quality flesh and a good market demand. Research is needed to determine the environmental requirements under which growth of dusky kob is optimised. This study assessed the effect of temperature, light intensity, feeding frequency and stocking density, respectively, on growth, feed conversion ratio (FCR) and survival of juvenile dusky kob within a weight range of 10-60 g fish⁻¹) in a series of four growth trials. The effect of temperature on growth and FCR was assessed at 14 temperatures from 17 to 28°C. The temperature for best growth was estimated to be 25.3 °C, while 21.4 °C was the temperature at which the best FCR was achieved. A growth trial testing the effect of light intensity on growth showed that light intensity did not affect growth in the range of 23 – 315 lx. Fish fed a restricted ration of 3.6% body weight per day (chapter 2) or 3.41% body weight per day (chapter 4) had a better FCR than fish fed to satiation. A trial to assess the effect of feeding frequency on growth and FCR showed that fish fed both two or three times daily grew better than those fed once daily. FCR was best in fish that were fed once or twice daily. Preliminary analysis of the results from a stocking density trial showed that stocking density in the range of 10 – 50 kg m⁻³ did not affect growth of juvenile dusky kob. It is recommended to culture dusky kob at a temperature of 25.3 - 21.4 °C at stocking densities up 50 kg m⁻³ to maximise growth. However, a study is needed to determine the environmental conditions needed to maximise profit under commercial conditions. The results allow the South African industry the opportunity to assess the culture potential of this species. In addition, the results will help develop protocols that can be used in other South African candidate aquaculture species such as silver kob, yellowtail, white-stumpnose and sole.
- Full Text:
- Date Issued: 2008
- Authors: Collett, Paul David
- Date: 2008
- Subjects: Argyrosomus -- South Africa , Mariculture -- South Africa , Fishes -- Nutrition -- South Africa , Fishes -- Growth -- South Africa , Fish trade -- South Africa , Sciaenidae
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: vital:5325 , http://hdl.handle.net/10962/d1005171 , Argyrosomus -- South Africa , Mariculture -- South Africa , Fishes -- Nutrition -- South Africa , Fishes -- Growth -- South Africa , Fish trade -- South Africa , Sciaenidae
- Description: The South African mariculture industry is developing the rearing technology of indigenous fish species. Dusky kob (Argyrosomus japonicus) has high-quality flesh and a good market demand. Research is needed to determine the environmental requirements under which growth of dusky kob is optimised. This study assessed the effect of temperature, light intensity, feeding frequency and stocking density, respectively, on growth, feed conversion ratio (FCR) and survival of juvenile dusky kob within a weight range of 10-60 g fish⁻¹) in a series of four growth trials. The effect of temperature on growth and FCR was assessed at 14 temperatures from 17 to 28°C. The temperature for best growth was estimated to be 25.3 °C, while 21.4 °C was the temperature at which the best FCR was achieved. A growth trial testing the effect of light intensity on growth showed that light intensity did not affect growth in the range of 23 – 315 lx. Fish fed a restricted ration of 3.6% body weight per day (chapter 2) or 3.41% body weight per day (chapter 4) had a better FCR than fish fed to satiation. A trial to assess the effect of feeding frequency on growth and FCR showed that fish fed both two or three times daily grew better than those fed once daily. FCR was best in fish that were fed once or twice daily. Preliminary analysis of the results from a stocking density trial showed that stocking density in the range of 10 – 50 kg m⁻³ did not affect growth of juvenile dusky kob. It is recommended to culture dusky kob at a temperature of 25.3 - 21.4 °C at stocking densities up 50 kg m⁻³ to maximise growth. However, a study is needed to determine the environmental conditions needed to maximise profit under commercial conditions. The results allow the South African industry the opportunity to assess the culture potential of this species. In addition, the results will help develop protocols that can be used in other South African candidate aquaculture species such as silver kob, yellowtail, white-stumpnose and sole.
- Full Text:
- Date Issued: 2008
- «
- ‹
- 1
- ›
- »